
Parallel straight lines do not meet one
another in either direction. — Euclid 8A C O U S T I C R E N D E R I N G

AURALIZATION describes the process of employing physical and mathematical
models based on Euclidean geometry to render a virtual auditory scene audible.

Thereby a binaural sound output that simulates the acoustic experience for a certain
location and for a specific listener in this virtual environment is created. Auralization is
an important factor for the research in this thesis, as sound and acoustics are both used as
the main carrier to display abstract information. The majority of current applications that
employ 3D sounds and room acoustics simulations use freely and commercially available
APIs, such as OpenAL/EFX, FMOD or AM3D (Firelight Technologies Pty, Ltd, 2001-2008;
AM3D A/S, 2008; Hiebert, 2006; Peacock et al., 2006). Although these APIs are easy to
deploy and achieve quite good results for audio/visual presentations, they often fail in
audio-only applications as too many approximations are applied regarding the human
auditory perception and propagation of sound waves. This chapter takes a closer look
into acoustics and 3D sound rendering with a focus of sonifying 3D virtual/augmented
auditory environments. Here not only several techniques are discussed, but also advanced
and transferred to a graphics-inspired sound rendering technique to achieve a more
realistic and efficient simulation.

The chapter is divided into five sections, of which the first one takes a closer look on the
requirements of sound rendering for virtual and augmented auditory environments and
discusses the most important concepts and techniques. The following section continues
the discussion in the direction of a graphics-based sound rendering and debates the
utilization of graphics hardware for general (sound) signal processing. Based on these
findings and developments, the following two sections present and discuss ideas for a
graphics-inspired sound simulation through a ray- and a wave-based acoustic simulation.
As each of these techniques has its respective advantages and drawbacks, the last section
discusses concepts towards a possible unification.

8.1 auralization and sound rendering

This first section is dedicated to the auralization of spatial auditory environments and
discusses their requirements for sound rendering and auditory design. Auditory environ-
ments and augmented audio reality have been introduced and discussed in Chapter 5

and Chapter 6, although in these sections with a focus centered around their definition
and application. Section 5.2.2 already motivated the needs for a non-realistic auditory
design for 3D virtual auditory spaces, at which point this section continues this discussion
from a more technical, auralization-centered, perspective.

Essential for an auralization of 3D auditory environments are three types of sound:

• Spatialized 3D sound sources,

• Non-spatialized sounds, and

• Room acoustic simulations.

A discussion of their application can be found throughout this research, but is high-
lighted especially in Section 3.4 and Section 5.2. 3D spatialized sounds are required for all

105

106 acoustic rendering

objects with a defined position within a 3D virtual/augmented environment. The spatial-
ization of sound allows later to determine the sounds origin and distance relative to the
user, which are both encoded using directional and distance cues. For this task, techniques
of HRTF/HRIR convolution (direction) and low-pass filtering (distance) are applied, refer
also to Section 3.2.2. Non-spatialized sounds, eg. mono or stereo sounds with an in-head
localization, are employed for additional descriptions that are not assigned a specific
position within the 3D environment. Examples include the narrators voice from the off, as

Room Acoustics

Direct Sound
Secondary
Reflections

Figure 55: Room Auralization.

well as ambient music and feedback
sounds from an non-spatial auditory
menu system. Room and environmental
acoustic simulations are applied to spa-
tialized sounds only, to further integrate
and represent them within their local
surroundings. As an example, Figure 55

shows an overview of the sound render-
ing required and also identifies some of
the various sound types used. Figure 55

displays 3D positional sound sources as
red objects in the scene, as well as shows
their direct (red) and secondary (blue)
reflections on the room’s walls. The two
blue objects (window and door) show
the position of additional environmental
sound objects, which both describe the
outer exteriors, eg. the acoustic space on
the other side of the window/door.

An accurate 3D sound rendering along a realistic simulation of a room acoustics is still
a very difficult and computationally intensive task. Yet many applications, such as 3D
computer games and virtual training scenarios, rely on a realistic acoustic presentation
that is able to complement the visual depictions. The difference to audio-only applications
and 3D virtual auditory environments is that in these cases the visual image delivers
the key information, which is only complemented by the auditory display. That means
that an accurate description of an auditory environment requires techniques with a
higher quality for both, 3D sound spatialization and acoustic simulation. Almost every
application that currently employs either of these techniques is based on 3D sound APIs,
with their shortcomings and approximations described earlier (Boer, 2002b). Although
the examples and prototypes in this research are also mainly based on OpenAL/EFX
and AM3D, this chapter takes a closer look on techniques for a higher quality and more
efficient sound rendering and simulation.

The propagations of sound and light seem on a first glance to not have very much in
common, but they share, nevertheless, several similarities that can easily be exploited.
The following sections examine the possibilities to employ computer graphics techniques
and commodity graphics hardware for sound rendering and simulation. Some of the
most promising techniques are thereby discussed in more detail and adapted towards a
graphics-based sound rendering approach. The motivation for this research is twofold, as
on one hand computer graphics and graphics hardware can be used to qualitatively and
quantitatively improve existing sound simulations, but also provides a glimpse into a
possible future of programmable sound hardware. Currently available PC sound hardware
is rather fixed in its pipeline and functionality, although some steps were already made
into this direction (Aureal, 2000; Creative Labs, 2005). Nevertheless, a fully customizable
sound rendering pipeline, similar to the development of graphics hardware over the

8.1 auralization and sound rendering 107

last decade, would benefit many applications and allow sound simulations and custom
effects with a much higher realism by the use of personalized HRTFs, thus increasing the
level of immersion in all applications (Röber et al., 2006c, 2007).

8.1.1 3D Sound Rendering

One of the key aspects that is required is an efficient and high-quality 3D spatialization of
monaural sound sources. The perceptional and physical principles for this were outlined
and discussed in Chapter 3. The focus of this section is to introduce several concepts
and techniques to actually perform 3D sound spatialization, with the goal to identify
possibilities that can be exploited to improve 3D sound synthesis in both, quality and
efficiency.

A very interesting approach is here described using so called perceptual rendering
techniques, which acoustically display the virtual scene tailored to the auditory senses.
This approach can, in conjunction with Section 5.2.2, be described as a non-realistic
auditory scene design, as it only considers those parts of the environment that are clearly
audible from the user’s current position. Research in this area has been conducted by
Funkhouser et al. and Tsingos and Drettakis, who both looked at certain techniques to
increase the richness of 3D auditory scenes by grouping and classifying sound sources
depending on their importance and perception (Funkhouser et al., 1999a; Tsingos and
Drettakis, 2004; Tsingos, 2007). Their results can be applied to many areas and used to
enhance the display and the perception of 3D virtual auditory environments. However,
efficient techniques for the spatialization of monaural sounds are still required.

Most 3D sound systems employ here a convolution using HRIR/HRTF filters, which
describe the transformation of a monaural sound into a binaural signal representing
the source with its current position, orientation and distance. This function is based on
sound reflections along/within the torso/shoulder/head system, and therefore exhibits a
strong personalization effect. Current HRTFs that are employed in sound hardware and
sound spatialization APIs are based on generalizations using so called standard ears. This,
however, causes several perceptional artifacts and especially front/back and up/down
conversions. A solution to this problem would be the measurement or simulation of
personal HRIR filters to increase the accuracy and efficiency for 3D source localization.
However, some researchers have also shown that listeners can – in certain cases – adopt
to non-personalized HRTFs, which allows the development of training applications to
accommodate the listener’s hearing to adjust to given HRTFs (Hofman et al., 1998;
Richardson and Kaiwi, 2002).

The personalization of HRIR filters is still an active and not yet fully resolved area of
research. As the measurement is complex and requires dedicated equipment, the majority
of approaches focus on a simulation using 3D geometrical models (Kahana et al., 1999;
Richardson and Kaiwi, 2002). Two techniques exist, which are often applied for sound
simulations are the wave-based and the ray-based approach, see also Section 8.1.2. Two
often employed techniques are based on either boundary element methods (BEM), or
finite element methods (FEM) (Ise and Otani, 2002). However, as the simulations are
very complex and time consuming, an alternative solution has to be found. An idea that
was already expressed at the beginning of this chapter is the use of computer graphics
hardware and graphics-based techniques for the simulation. The remaining sections of
this chapter further develop this idea and explore two possibilities to employ graphics
technology to enhance the display of 3D virtual auditory environments, both qualitatively
and quantitatively.

108 acoustic rendering

(a) Wave-based Approach. (b) Ray-based Approach.

Figure 56: Acoustic Simulation Techniques.

A different approach for 3D sound rendering is the use of ambisonics, or B-Format, for
the recording and playback of real/virtual sound fields. The technology was developed
in the 1960s and describes a multi-channel recording/playback system that can be used
for spatial recordings, but also for the presentation of virtual 3D sound fields (Cooper
and Taylor, 1998; Pope et al., 1999). Ambisonics are based on a decomposition of a sound
field using spherical harmonics and describes the sound pressure along several different
gradients. The first-order B-Format is based on just four channels, but more can be added
to increase the accuracy of the system. A great advantage for using ambisonics is that
they can efficiently be simulated using computer graphics as well. Dempinski and Viale
describe an implementation in 3D computer graphics to illuminate 3D objects using
global illumination models (Dempinski and Viale, 2005). The exact same principles, with
slight modifications of course, can also be applied for a rendering of 3D sound sources
and virtual sound fields, which makes this technology very interesting to enhance any
spatial auditory display system.

Besides the rendering and synthesis of 3D sound sources, also the simulation of
environmental, or room acoustics is very important. It conveys information about the
local surroundings, but it can also be used to detect objects and obstacles in close vicinity.
The next section therefore summarizes two of the most widely applied techniques for the
simulation of environmental acoustics.

8.1.2 Acoustic Simulation Techniques

The two most often used approaches for the simulation of room acoustics are 3D
waveguide meshes and ray/beam tracing techniques, see also Figure 56 for a com-
parative overview. Figure 56a displays a visualization of the waveguide technique, a
more physically correct sound propagation model that is based on differential equations.
The acoustic energy (eg. pressure) is distributed along nodes using difference equations,
which emphasize the applicability of this technique to the simulation of wave-based
propagation effects, such as diffraction and interference. Due to its computational high
complexity, it is usually only employed for the lower frequency end.

Figure 56b visualizes an alternative approach that is based on energy acoustics and
uses ray tracing techniques. This method is based especially on techniques from computer
graphics, and is, due to the approximation of sound waves to sound rays only applicable
to the middle and higher frequency parts.

Over the past years, graphics hardware has inspired several researchers to also deploy
it in a large variety of non-graphics applications, including sound rendering and sound
simulation (Whalen, 2005; Aszódi and Czuczor, 2002; Jedrzejewski, 2004; Röber et al.,

8.2 sound signal processing 109

2006c, 2007). Jedrzejewski uses the GPU for simple 2D geometric room acoustics using
ray tracing and regular specular reflections (Jedrzejewski, 2004), while Kapralos et al.
and Deines et al. employ a particle-based system to adopt the photon mapping technique
towards a phonon tracing approach (Kapralos et al., 2004; Bertram et al., 2005; Deines
et al., 2006b). The aforementioned ray- and wave-based techniques for sound simulation
posses a great potential for a hardware-accelerated graphics-based implementation as
well. Section 8.3 and Section 8.4 refer to these techniques and discuss a GPU-based
implementation that enhances both methods in terms of quality and simulation efficiency.

8.2 sound signal processing

With the availability of programmable graphics hardware and high-level shading lan-
guages, graphics programming moved into the focus of many research communities
and improved their scientific computations (Owens et al., 2005). The GPU as the core
of current graphics hardware can be characterized as a massively parallel streaming
processor that has applications in many research areas. The advantages of a GPU-based
implementation for sound rendering and simulation are obvious: Not only that the prop-
agation of light and sound shares several similarities which can be easily exploited, but
also because the GPU can be straightforwardly turned into a freely programmable DSP
for general (sound) signal processing.

Digital signal processing is concerned with the alteration and modification of digital
signals, and involves a frequency-dependent amplification or attenuation of certain parts.
Digital filters can perform virtually any operation, but are limited by the filter’s cost
and execution speed. Several different filter types exist in time-domain sound signal
processing, with the most common being linear, causal, time-invariant and FIR filters
(Zölzer, 2002). A digital filter can be described by its impulse response or its transfer
function in the Z-Domain:

y(n) =

N∑
i=0

hix(n− i) (8.1)

H(z) =

N∑
n=0

hnz
−n (8.2)

Here, Equation 8.1 shows the familiar time-based convolution of an input signal with a
finite impulse response (FIR) filter of size N+ 1, while Equation 8.2 displays the filter’s
transfer function within the Z-Domain. When plotted along the Z-plane, H(z) visualizes
the zeros and poles of this filter operation and thereby directly the areas of amplification
and attenuation of the frequency response (Zölzer, 2002). This is very useful for the
design of digital filters, in which poles and zeros can simply be placed along the unit
circle to quickly evaluate the filter’s frequency response.

Sound signal processing has many applications for the sonification of 3D virtual
auditory environments. Impulse responses are used to convolve dry sound files to create
a spatialized, binaural impression (HRIR) and to simulate a room’s acoustics (RIR). Due
to the large number of sound files, the convolution is thereby required to be performed
in the most efficient way possible. Nevertheless, several approximations are available
and can be used to reduce the computational cost with a minimal impairment of the
signal’s accuracy. Currently available sound APIs employ a large variety for emulating
room acoustics and sound spatialization. OpenAL, for instance, uses low-pass filters and
several delay lines to simulate obstruction and occlusion effects (Hiebert, 2006; Peacock

110 acoustic rendering

et al., 2006). Hall and echo, again with low- and band-pass filters applied, are employed
to create an illusion of room acoustics.

Using the earlier discussed advantages of commodity graphics hardware, the following
section explores the possibilities for utilizing computer graphics techniques and high-level
shading languages for a general (sound) signal processing.

8.2.1 The GPU as Digital Signal Processor

The GPU as a stream-based and freely programmable processor is highly suited for
a general time-domain signal processing. Two publications that already discuss these
possibilities have been presented by Gallo and Tsingos and Whalen (Gallo and Tsingos,
2004; Whalen, 2005). Gallo and Tsingos employ the GPU for 3D sound spatialization and
measured a slight increase in performance compared to a regular CPU implementation
(Gallo and Tsingos, 2004). Whalen concentrated his efforts on a classic DSP approach and
implemented several convolution-based signal processing effects using fragment shaders
(Whalen, 2005). A direct comparison with a CPU implementation revealed, however, that

Input Texture

CPU GPU

Sig

Streaming

gnal Processin

Filter

ng

Readback
Playback (OpenAL) Output Texture

Raw Sound Data

Figure 57: GPGPU-based Signal Processing.

the CPU outperformed the
GPU at several occasions.
The work of both au-
thors is, however, based on
earlier GeForceFX GPUs,
which also both describe
as inefficient for audio
processing due to limi-
tations in texture-access
modes, shader-length and -
complexity, as well as a too
slow AGP bus connection
(Whalen, 2005; Gallo and
Tsingos, 2004). Since then,
several improvements have

been made and current graphics technology with its unified shader architecture and
high-speed PCIe bus connection performs very well for the manipulation and filtering of
digital signals.

Utilizing the GPU for time-domain DSP filtering operations is very similar to the
general GPGPU1 approach, as is illustrated in Figure 57. The input signal is transferred
into graphics memory and loaded as a floating point texture with each texel representing
one sample. A second texture holds the convolution kernel, while a third texture is used
for the filter result. The convolution itself is implemented using fragment shaders and
applied per texel of the input texture.

GPU-based Signal
Processing.

A shader example that performs a box average can be seen in Listing 8.1. In this
example, texture contains the 1D input signal and is stored in a 2D texture array with
length being half the filter’s size. The return value is the original texture, in which the
red channel now holds the averaged filter signal. Additional examples for employing the
GPU as general DSP can be found in Section A.1, which also discusses shader examples
for the later discussed GPU-based sound simulations.

The enormous efficiency advantage of a GPU-based implementation is primarily the
result of a parallel computation. This approach, however, does not permit a realization of
all types of digital filters in graphics hardware. Some have to be implemented as several

1 GPGPU = General Purpose computations using a Graphics Processing Unit (GPU)

8.2 sound signal processing 111

1 float4 convolution(float2 coords : TEX0, uniform sampler2D texture) : COLOR

{

float4 s1 = tex2D(texture, coords);

//----- median filtering with size 2*length+1 -------//

6 float tmp = 0.0;

for (int i=(-1*length) ; i<(length+1) ; i++)

tmp += (0.5-tex2D(texture, sample(coords, i)));

float tmp2 = 1.0 + (((length*2)+1) / 100.0);

11 s1.r = saturate(0.5+(tmp2*(tmp / (1+(2*((length*2)+1))))));

return s1;

}

Listing 8.1: GPU Signal Processing (Convolution).

rendering passes, or require a pass-in of additional parameters/computations performed
on the CPU (Micea et al., 2001; Röber et al., submitted). Table 6 shows the efficiency
of several examples, which have been implemented and tested on the CPU, as well as
in graphics hardware using fragment shaders and the approach displayed in Figure 57.
The efficiency is measured in fps, and refers to the number of sound samples (44.1kHz
resolution, 1s length) processed per second. It shows the raw processing efficiency
only, without data streaming or any other computations. Two GPUs were evaluated to
additionally assess the differences in available graphics hardware.

The results in Table 6 show clearly that older graphics technology is not always able to
compete with the CPU (Whalen, 2005), but also that newer graphics hardware with its
unified shader architecture possesses enormous computational capacities.

Time-domain signal processing filters are easy to implement and can also be combined
with sound simulation techniques to perform a binaural sound rendering. However,
convolutions with large kernel sizes are still very time consuming. A possible solution
is a filtering in the frequency domain, at which the following section discusses an
alternative approach using an implementation of frequency band decompositions and a
signal filtering with adjustable frequency weights.

Filter Type CPU-based GPU-6800GT GPU-8800GTX

Volume 3,400 fps 11,200 fps 90,500 fps

Normalize 3,150 fps 10,600 fps 96,250 fps

Convolution (5) 1,600 fps 1,320 fps 43,500 fps

Convolution (25) 501 fps 300 fps 11,300 fps

Convolution (125) 90.5 fps 64.1 fps 2,560 fps

Pitch / Resampling 1,700 fps 1,880 fps 58,500 fps

6-Tap Delay 1,450 fps 1,600 fps 25,800 fps

Chorus / Flanger 2,650 fps 3,600 fps 70,000 fps

Compressor / Limiter 820 fps 1,120 fps 30,300 fps

Table 6: CPU vs. GPU - Signal Processing Efficiency (fps per 44.1kHz/1s).

112 acoustic rendering

fj frangej
fcenterj

λcenterj

f0 22 Hz — 44 Hz 31.5 Hz 10.88 m

f1 44 Hz — 88 Hz 63 Hz 5.44 m

f2 88 Hz — 177 Hz 125 Hz 2.74 m

f3 177 Hz — 354 Hz 250 Hz 1.37 m

f4 354 Hz — 707 Hz 500 Hz 0.68 m

f5 707 Hz — 1,414 Hz 1,000 Hz 0.343 m

f6 1,414 Hz — 2,828 Hz 2,000 Hz 0.172 m

f7 2,828 Hz — 5,657 Hz 4,000 Hz 0.086 m

f8 5,657 Hz — 11,314 Hz 8,000 Hz 0.043 m

f9 11,314 Hz — 22,627 Hz 16,000 Hz 0.021 m

Table 7: Frequency Bands fj.

8.2.2 Frequency-based Filtering

Two approaches are applicable for a frequency-dependent sound signal processing, either
with or without the use of a Fourier transform. The straightforward approach uses
complex textures and a CPU- or a GPU-based FFT for a frequency domain conversion
of the signal data (Ritter et al., 1999; Govindaraju and Manocha, 2007). The phase and
amplitude are stored within complex textures and can be processed and manipulated
using fragment shaders, analog to Figure 57. After filtering and an inverse transformation,
the signal data is streamed back to main memory for further processing or playback. An
alternative approach is to decompose the signal in a pre-processing step using windowed
sinc filters into several frequency bands (Table 7), and to process each of these bands
individually using a frequency-dependent weighting function. This still allows an efficient
processing and implementation, but in respect to a filters frequency behavior and without
the necessity of time-consuming FFT conversions.

Frequencies of the audible spectrum are classified and described by frequency bands
(octaves) according to human psychoacoustics (Vorländer, 2007; Goldstein, 2007). Table 7

provides an overview of the different frequency bands, along their index number, fre-
quency range frangej

, center frequency fcenterj
and center wavelength λcenterj

. The
audible spectrum is therefore defined as the sum of these 10 frequency bands:

Aspectrum = As =

9∑
j=0

fj (8.3)

HRIR convolutions are a good application to describe this filtering approach. HRIRs are
a collection of FIR filters that are dependent on direction, distance and time, and are used
for 3D sound spatialization. Prior to the binaural rendering of a scene, all HRIRs and
footage sounds need to be decomposed into these 10 frequency bands. Later, the acoustic
energy of each direction is filtered and delayed with its associated HRIR. In a second step,
the energy of all bands are accumulated according to Equation 8.3. Compared with the
last section, this approach is preferable if a frequency-dependent weighting is required.
Besides the pre-processing step for the initial signal decomposition, this technique is
still very efficient, easy to implement, and allows a frequency-dependent modeling of
materials and sound/object interactions.

8.3 3d waveguide technique 113

8.3 3d waveguide technique

As outlined in Section 8.1, the waveguide technique is a commonly employed method in
room acoustics to simulate the propagation of sound waves using numerical techniques
and time-domain difference models. Waveguides have been originally developed for the
simulation of string-based musical instruments (VanDuyne and Smith, 1993; Smith, 1992),
and were later also applied to model the vibrations of air in room acoustic simulations
(Savioja et al., 1995). Waveguides and 3D waveguide meshes are very well suited for the
simulation of sound wave propagation, but require a huge amount of sampling points
(nodes) in order to achieve realistic results. This makes this approach technically only
applicable to the lower frequency end, as with higher frequencies the necessary sampling
distance decreases and the number of nodes required rises cubically.

As motivated throughout the last chapters, the quality and efficiency of sound render-
ing is of the highest importance, especially for an acoustic display of 3D auditory environ-
ments. Here not only techniques for 3D sound spatialization are required, but also meth-
ods for a realistic simulation of room acoustics and an auditory presentation of the local

Figure 58: 3D Waveguide Node.

environment. The waveguide technique offers
here a promising approach that can be improved
in terms of quality and efficiency by using com-
puter graphics and commodity graphics hard-
ware. Current graphics applications typically re-
quire the processing of huge amounts of data,
for which graphics hardware has been optimized
to support using a highly parallel design. This
makes this hardware, along with its high-level
programming techniques, very interesting for par-
allel computing problems, such as wave propa-
gations using waveguide meshes. The idea is to
develop a technique that allows a fast and – if pos-
sible – real-time implementation of 3D waveguide
meshes for the lower and mid frequency ranges.
The simulation results can then directly be ap-
plied for an environmental presentation of 3D
auditory spaces. Using additional techniques for a non-realistic auditory design, this
setup should provide the environmental information required to navigate and orient
oneself through 3D virtual auditory environments.

8.3.1 Waveguide Meshes

Waveguide meshes are an extension of the waveguide technique and constructed by
bi-linear delay lines that are arranged in a mesh-like structure (VanDuyne and Smith,
1993). Each node in the mesh is defined as scattering junction and acts as spatial and
temporal sampling point for the wave and energy propagation. Scattering junctions are
thereby of equal impedance with two main constraints in effect:

• The sum of all inputs is equal to all outputs, and

• The pressures in each crossing waveguide are equal at the junction.

By assuming a lossless scattering, the acoustic pressure vJ is determined by adding all
incoming wave components v+i according to Equation 8.4 (VanDuyne and Smith, 1993).

114 acoustic rendering

The relationship between the incoming v+i and outgoing v−i components is expressed by
Equation 8.5.

vJ =
2

∑
i Riv

+
i∑

i Ri
(8.4)

v−i = vJ − v+i (8.5)

For a homogenous N-dimensional rectilinear mesh, in which each junction connects to
2N neighbors, Equation 8.4 is reduced to:

vJ =

∑
i v

+
i

N
(8.6)

By discretizing time and space one obtains the difference equations that govern the wave
propagation within an N-dimensional rectangular mesh with:

vJ,k =

∑
l vJ,l(n− 1)

N
− vJ,k(n− 2) (8.7)

In this equation, k identifies the current node, n represents the discretized time steps
and l is associated with neighboring nodes. In order to simulate boundary conditions, so
called 1D termination nodes with only one neighbor are employed to simulate phase-
reversing and -preserving reflections, but also non-reflective, anechoic walls (Savioja et al.,
1995). Certain atmospheric absorption effects can be emulated using an additional factor,
but are here ignored due to an application in interior acoustics only.

A major problem with digital waveguide meshes is a non-isotropic speed for energy
propagation. This is also known as frequency dispersion and varies between different
mesh topologies. The dispersion error for the rectilinear grid ranges from zero along the
diagonals to its maximum extent along the coordinate axes, and is quantified as:

kd(β) =
c ′β

c
(8.8)

with c being the speed of propagation in a dispersion free environment, and c ′β the
actual speed in the direction of β. The analytical expressions for kd can be derived
using Von-Neumann analysis (Bilbao, 2004; Campos and Howard, 2005; Fontana and
Rocchesso, 2001), and show that the dispersion error for the 3D rectilinear mesh ranges
on a spherical surface between 0.927 < kd < 1, with kd = 1 along the diagonal axes. This
causes a distortion of the initially spherically bandlimited signal along the coordinate
axes, which also impairs the simulation results.

8.3.2 Optimal Sampling

The rectilinear Cartesian lattice is in terms of sampling efficiency not the most optimal
grid available. Under the assumption of an isotropic spherically bandlimited signal,
hexagonal lattices provide a much better packing density. A denser packing of spectra
in the frequency domain translates to an increase in sampling distance in the spatial
domain. The Body-Centered-Cubic grid (BCC) represents such a hexagonal lattice, see
also Figure 59b. A direct comparison with the Cartesian grid in Figure 59a reveals that
a BCC node has 8 nearest neighbors and is constructed with an additional sampling
point in the cell center. Due to the more optimal sampling, the internodal distance can

8.3 3d waveguide technique 115

be increased to
√
1.5, which in 3D results in roughly only 70 % of the sampling points

required to represent the same information (Conway and Sloane, 1976). Hexagonal grids
are also very common in nature, as bees, for example, build their honeycombs using
hexagonal cells and as a result achieve a minimum expenditure of wax.

An advantage of the BCC grid is that it can be decomposed into two cubic grids that
intertwine and are offset by half the sampling distance, see Figure 59b. More generally,
the N dimensional hexagonal lattice can be constructed by two N-1 rectilinear grids that
are shifted by

√
2 in all N dimensions. This characteristic allows an easy indexing of the

data and is also of high importance for a later implementation in graphics hardware.
The BCC lattice is already known and used in computer science for image processing
and scientific visualization (Theußl et al., 2001b; Röber, 2002), but has its main roots in
chemistry and crystallography (Jackson, 1991; Wells, 1984a).

The BCC lattice offers several advantages for the simulation of room acoustics using
digital waveguide meshes. The inherent optimal sampling requires only about 70 % of the
original sampling points, and thereby directly reduces the computational load and data
storage required. Additionally, as the BCC grid has 4 delay units per node, a different
and lower frequency dispersion error can be expected.

(a) Cartesian Lattice. (b) BCC Lattice.

Figure 59: Cartesian and Body Centered Cubic Lattice.

The equations that govern the propagation of sound waves using the BCC lattice are
based on difference equations derived from the Helmholtz equation by discretizing time
and space. With now 4 principal axes they are transformed to:

p(t+ 1,w, x,y, z) =

1
4 [p(t,w+ 1, x,y, z) + p(t,w− 1, x,y, z)

+p(t,w, x+ 1,y, z) + p(t,w, x− 1,y, z)

+p(t,w, x,y+ 1, z) + p(t,w, x,y− 1, z)

+p(t,w, x,y, z+ 1) + p(t,w, x,y, z− 1)]

−p(t− 1,w, x,y, z)

(8.9)

in which p is the pressure at point (w, x,y, z) at time step t. Because of the increased
sampling distance, the unit length in the BCC lattice is extended to

√
1.5, which also

changes the update frequency fupdate to:

fupdate =
c
√
2

∆x
≈ 480.8

∆x
Hz (8.10)

As a result, the BCC lattice propagates sound waves faster than the rectilinear Cartesian
lattice, which has to be considered in virtual impulse response measurements. The

116 acoustic rendering

A(t+1) B(t) C(t-1)

Slicing Planes

Figure 60: 3D Waveguide Mesh – Rendering Principle.

frequency dispersion factor kd has for a spherical surface a range of 0.953 < kd < 1

(Campos and Howard, 2005). At its maximum extent, the error is only 4.7 %, compared
to the 3D rectilinear grid with 7.3 % in the direction of βn = π/2. The spatial bandwidth
can be determined by decomposing the BCC lattice into two rectilinear grids of spacing d.
The sampling efficiency of the BCC lattice compared to the 3D rectilinear grid therefore
is:

µBCC

µCC
=

1√
2
≈ 0.707 (8.11)

Although, in a direct comparison with the rectilinear Cartesian grid, the computational
effort per node is slightly higher, overall it is still much more efficient and also exhibits a
less pronounced dispersion error.

8.3.3 GPU-based Implementation of 3D Waveguide Meshes

) 3D waveguide meshes are easy to implement and realize in graphics hardware using a
high-level shading language. The technique is mainly based on 3D 32-bit floating point
textures, fragment shaders, as well as OpenGL’s framebuffer objects (FBO). The BCC
waveguide mesh can be decomposed into two rectilinear 3D textures, which are loaded
and stored separately into texture memory. Both grids with time frames t− 1 and t

reside here in just one single RGBA texture. The base grid is loaded into the Red and
Green channel, while the offset grid is placed in Blue and Alpha. This allows to compute
two nodes, eg. one BCC cell, in one step. The channels are directly rendered into a
framebuffer object in an alternating fashion, having one texture attached to it as the
primary render target. Figure 60 visualizes the method’s principle. The three textures A,

Mesh Size 2D-CC CPU 2D-CC GPU 3D-CC CPU 3D-CC GPU 3D-BCC GPU

64× 64× 24 32, 000 fps 9, 800 fps 238.0 fps 1, 358.0 fps 1880.0 fps

128× 128× 24 7, 500 fps 6, 330.0 fps 16.1 fps 990.0 fps 1240.0 fps

256× 256× 24 2, 000 fps 5, 024 fps 4.1 fps 322.0 fps 430.0 fps

512× 512× 24 456.6 fps 2, 670.0 fps 0.9 fps 88.3 fps 121.0 fps

768× 768× 24 213.7 fps 1.377 fps 0.28 fps 39.9 fps 55.2 fps

1024× 1024× 24 123.06 fps 830.0 fps − fps 19.1 fps 31.6 fps

2048× 2048× 24 29.93 fps 221.0 fps − fps − fps − fps

4096× 4096× 24 7.9 fps 56.5 fps − fps − fps − fps

Table 8: Waveguide Mesh Efficiency – CPU vs. GPU (fps).

8.3 3d waveguide technique 117

(a) Wavefront at t = 40. (b) Wavefront at t = 80. (c) Wavefront at t = 160. (d) Wavefront at t = 320.

Figure 61: 3D Waveguide Meshes (BCC Lattice).

B and C contain the waveguide node data at their respective time frames. Texture B is
sampled using texture aligned slicing planes that have the same resolution as the texture
itself. During this sampling, and for every time frame, the fragment shader solves the
difference equations according to Equation 8.9 for each voxel in the waveguide mesh and
stores the results into the next buffer (eg. A).

A second channel contains additional scene information, such as scene geometry and
material specifications to model basic boundary conditions. An example of the fragment
shader discussed can be found in Section A.2, which shows the implementation using
both BCC nodes, an implementation of a sound source, as well as simple phase-reversing
reflections.

8.3.4 Results and Efficiency

Several experiments have been performed to evaluate and assess the quality and efficiency
of a graphics-based implementation of 3D waveguide meshes. The experiments have been
performed on a regular PC equipped with a P4 3GHz processor, 1GB of main memory
and an nVidia GeForce 8800GTX graphics accelerator. The performance results can be
seen in Table 8, although some results are missing due to insufficient texture memory
and CPU performances. For comparison reasons, also the efficiency of a simple, non-
optimized CPU implementation is shown. The results clearly show the advantages of a
graphics-based implementation, as especially for larger meshes, the CPU is outperformed
by a substantial factor. Table 8 also shows that the implementation of the BCC lattice

3D Waveguides CC.

3D Waveguides BCC.

is faster by a factor of approximately
√
2, the number of samples saved due to the more

optimal sampling used. An earlier implementation of this approach was impaired by the
non-availability of 3D)framebuffer objects, which massively decelerated the performance
due to a forced computation in 2D and a heavy texture copying (Röber et al., 2006c).
Although wave-based room acoustics can be computed much faster and with the same
accuracy using this technique, one limitation that applies is the texture memory available.
Dedicated GPGPU hardware provides today up to 1.5GB of RAM, and allows thereby
with this technique for over 100, 000, 000 waveguide nodes (Nvidia, 2007). This should be
sufficient for the modeling of most scenarios and can even be pushed further using more
efficient texture packing techniques.

Figure 61 shows several time frames for a setting of three rooms with reflecting
walls and ceiling. It was used to compare the quality, as well as the efficiency of both
implementations. The sound source is marked by a blue dot, the two microphones by
yellow dots, while walls are identified by green color. The data set in this example has a
size of 128× 128× 24 for the rectilinear Cartesian grid and a size of 92× 92× 34 for the
BCC lattice. The sound source, walls and microphone positions are adjusted accordingly

118 acoustic rendering

to fit the BCC’s dimensions. The rendering efficiency is for the rectilinear grid on average
of 990 fps, and for the BCC lattice 1, 240 fps. Both meshes were excited using a single
sine wave, whose frequency was adjusted for the BCC lattice according to Equation 8.10.

After this detailed examination of wave-based acoustic simulations, the following
section explores the applicability of a graphics-based implementation for ray-based
acoustic simulations.

8.4 ray/energy acoustic simulations

Geometrical acoustics is often referred to as ray/energy acoustics, and is in this respect
very similar to optical models used in computer graphics. Ray acoustics thereby ap-
proximates sound waves as particles that are moving along directional rays and adopts
existing ray tracing techniques for sound simulation. Due to this approximation, wave-
based propagation effects, such as diffraction and interference, are usually not considered
and therefore not part of the simulation. Ray acoustics is therefore only applicable to
frequencies, whose wavelength are much shorter than the dimensions of the enclosure or
any object within (Everest, 2001; Kuttruff, 2000).

Ray tracing is a long known area of research in computer graphics and has seen
many improvements and enhancements. Lately, with the introduction of dedicated
hardware, ray tracing shifted from an offline simulation towards an interactive and
realtime rendering system (Purcell et al., 2002; Purcell, 2004; Moreno-Fortuny, 2004).
Many advancements from the visual realm can also be mapped and beneficially applied
to ray acoustics simulation as well. Similar to the last section, computer graphics and
graphics hardware can aid ray-based sound simulations to perform faster and with a
higher quality. However, due to several differences in light and sound wave propagation,
spectral and temporal effects have to be integrated into the simulation model and
accounted for by the ray tracing system.

Several articles about ray/energy acoustics have been published, of which some already
discuss the realtime possibilities of a ray-based acoustic simulation system (Funkhouser
et al., 2002c; Savioja et al., 2002; Tsingos and Drettakis, 2004). The majority, however,
concentrates only on specular reflections using a ray/beam tracing-based approach and
uses conventional 3D sound APIs for sound spatialization and rendering (Wand and
Straßer, 2004; Neumann, 2004; Jedrzejewski, 2004).

To the author’s knowledge, none of the existing ray-based sound simulations were so
far examined regarding an application of global and local illumination models towards
ray/energy acoustics in greater detail. The next sections therefore provide an in-depth
analysis of computer graphics and ray tracing techniques, and concentrate especially on
building a foundation for ray/energy acoustics by extending models used in computer
graphics towards a time- and frequency dependent acoustic energy propagation.

8.4.1 Acoustic Energy Propagation

Sound is defined as mechanical energy and propagates through pressure variations
within a participating media, and can be described by attributes such as frequency,
wavelength and speed of propagation. Light on the other hand is an electromagnetic
radiation that is characterized by similar, however, largely different quantities. In order
to study and describe the propagation of sound waves using ray tracing techniques, an
adequate propagation model that includes time- and frequency dependencies needs to be
defined. Such a model can be developed in analogy to the physics of light transportation

8.4 ray/energy acoustic simulations 119

by using and extending the tools of radiometry to also include spectral and temporal
propagation effects (Dutre et al., 2003; Beranek, 1986).

Acoustic energy is described as the amount of pressure variations per unit volume and
time, or, more precisely, by the changes in velocity of air particles contained in a volume
element per unit time. Acoustic energy is quantitatively measured in Watt or Joule/sec
and described as radiant power Φ or flux (Dutre et al., 2003). The intensity is thereby
defined as the amount of acoustic energy that flows from/to/through a surface element
per unit time:

I(t) =
dΦ

dA
dt (8.12)

The energy density in the medium of propagation is defined as the sum of its kinetic and
potential energy per unit volume dV and time: E(t) = Ekin(t) + Epot(t) (Beranek, 1986).
The kinetic energy density, or sound wave pressure, is therefore described as:

Ekin(t) =
1

2

Mc2

V0
dt =

1

2
ρ0c

2dt (8.13)

with c being the average velocity of air particles, ρ0 the average media density and M
V0

the
mass per unit volume. The potential energy density can be derived from the gas law as:

Epot(t) =

∫
pdp

c2ρ0
dt =

1

2

p2

c2ρ0
dt (8.14)

with p as the pressure of the sound wave and c the speed of sound in this medium. The
total amount of acoustic energy density is therefore described as (Beranek, 1986):

E(t) = Ekin(t) + Epot(t) =
1

2
(ρ0c

2 +
p2

c2ρ0
)dt (8.15)

With Equation 8.15 being sound at any position and time within the virtual auditory
environment, it serves as basis for defining an acoustic energy propagation model. In
order to quantitatively measure flux per unit projected surface area and per unit angle,
radiance is introduced with (Dutre et al., 2003):

L(x,Θ) =
d2Φ

dωdAcosθ
(8.16)

and varies with position x and the ray’s direction Θ. By incorporating the wavelength λj

of the frequency bands used (refer to Table 7), Equation 8.16 changes to:

L(x,Θ, fj) =

∫
As

L(x,Θ, fj)dλ (8.17)

The acoustic energy that interacts with a surface element is further differentiated in
incident Ei (incoming) and exitant Ee (outgoing) energy:

Ei =
dΦ

dA
,Ee = kEi (8.18)

The scalar k (defined over [0, 1]) hereby describes the reflectivity of a surface element
with Esurface = Ei − Ee, and is affected by the surface material definitions. Using a
lossless participating media, the exitant radiance at one point L(x1 → Θ) is exactly the
same as the incident radiance at another point receiving this amount of energy L(x2 ← Θ)

(Dutre et al., 2003). This approach of reciprocity is also sound in real world acoustics and

120 acoustic rendering

employed in highly efficient inverse HRIR measurements (Li et al., 2004). Using a density
function and volume elements, p(x)dV defines the physical number of sound particles that
are carrying an acoustic energy quant. If moved in time dt across a differential surface area
dA, and by using the direction ω and speed of propagation c:

N = p(x,ω, fj) c dtdA cosθ dωdλ (8.19)

describes the number of particles flowing through this surface element. The radiance per
unit volume is accordingly redefined to:

L(x,Θ, fj) =

∫
As

∫
p(x,ω, fj)h

c

λj
dλ (8.20)

In this model, acoustic energy radiates from a sound source (speaker) using a certain
emittance pattern. This pattern can be homogenous in any direction (eg. spherically), or
direction dependent (eg. cone shaped). Similar to light, acoustic energy also attenuates
with distance using the familiar inverse square law and through atmospheric absorp-
tion effects. For small enclosures, this factor can safely be ignored, but becomes more
prominent with increasing distances. To sample the acoustic energy present at a certain
location, an observer, or listener is required. This listener does not interfere or participate
in the energy propagation, but, if required, such as in a binaural listening simulation,
additional geometry can be used to emulate head-shadowing effects.

8.4.2 Local acoustic Energy Exchange

The most interesting part in a ray-based acoustic simulation is the interaction and
exchange of acoustic energy with objects and surface elements. Depending on the
objects size and the acoustic material parameters specified, some of the incoming

Figure 62: Acoustic Energy Exchange.

energy might get absorbed, reflected,
refracted or transmitted, with the total
amount of energy, according to Equa-
tion 8.18, being constant. Figure 62

shows a schematic of the local acoustic
energy exchange. Every ray that is cast
into the scene contains, depending on
the sound source emittance, energy
from all frequency bands. The contri-
bution of each ray is evaluated at the
point of intersection with the surface
element using the ray’s length, its fre-
quency spectrum, as well as the surface
material properties defined.

Parts of the incident energy are usu-
ally absorbed and removed from the system. The absorption is frequency dependent and
characterized through a coefficient per frequency band αfj

:

Leabsorbed
(x← Θ) =

9∑
j=0

Eij
αfj

(8.21)

The diffraction of sound waves is also frequency dependent. Sound waves are thereby
simply bend around objects smaller than their wavelength, but continue unchanged
otherwise. In this case, transmission is redefined to describe the amount of energy

8.4 ray/energy acoustic simulations 121

(a) Normal Scene Rendering. (b) Top View – original and diffracted Ray. (c) Combined Depth/Edge Map.

Figure 63: Ray Acoustic Diffraction Simulation.

that passes through an object unaltered and without refraction. A frequency dependent
modeling can be implemented similar to Equation 8.21, which describe the transmission
of acoustic energy whose wavelength is equal or above a certain cutoff wavelength set by
the objects bounding box:

Letransmitted
(x→ (π+Θ)) =

9∑
j=0

Eij
τfj

. (8.22)

Here Letransmitted
(x→ (π+Θ)) describes the amount of exitant energy per ray for all

bands, which simply passes along the direction opposite to the incoming ray, ie. the ray’s
original direction. The term τfj

is used for a finer modeling and a frequency-weighting
of the transmission effects.

Reflection and diffuse scattering are probably the two most important qualities in an
acoustic ray tracing simulation system, and can be very well described using bidirectional
reflection distribution functions (BRDF) (Dutre et al., 2003). A BRDF is defined for a
point x as the ratio of the differential radiance reflected in an exitant direction Θe and
the differential irradiance incident through an incoming angle Θi:

brdfreflected(x,Θi → Θe) =
dL(x→ Θe)

dE(x← Θi)
(8.23)

The BRDF is thereby frequency dependent, but direction independent, eg. fr(x,Θi →
Θe) = fr(x,Θe → Θi) (Dutre et al., 2003; Li et al., 2004). Diffuse scattering hereby
uniformly reflects the incoming acoustic energy in all directions. In acoustics, this behavior
is largely influenced by the surface roughness µ, which can be used to derive a specular
reflection coefficient that describes the ratio between specular and diffuse reflections. A
frequency dependent BRDF for acoustic ray tracing includes all frequency bands, and
can be described through:

Lereflected
(x← Θi) =

9∑
j=0

Eij
υfj
clamp(

µ

fj
, 0, 1) (8.24)

in which υfj
is an additional weighting factor per frequency band fj. True refraction

effects can be computed similarly to Equation 8.23, in which the outgoing angle Φ of the
refracted ray can be determined using Snell’s Law. A frequency band weighted refraction
can be defined in a similar way to Equation 8.24.

8.4.3 Acoustic Ray Tracing and Diffraction Modeling

Figure 64 shows the auralization pipeline of the graphics-based ray acoustics sys-
tem. The 3D scene geometry is converted into a uniform grid structure in a pre-

122 acoustic rendering

CPU

GPU

Buffer Playback
OpenAL

Ray-acoustic Simulation
Raytracing and Object Interaction, Diffraction

Mixdown
L/R Channel

Scene
Evaluation

Filtering and
Synthesis

Sound Texture
10 Bands

HRTF Texture
10 Bands

Frequency Decomposition
10 Bands

Sound Data HRTF Data
3D Scene Data

Uniform Grid
Acoustic Material

User Interaction
Listener /Sound Position

Figure 64: Auralization Pipeline.

processing step. It subdivides
3D space and groups neighbor-
ing triangles in an axis aligned
uniform voxel-based topology
(Purcell et al., 2002; Purcell,
2004; Moreno-Fortuny, 2004).
This re-structuring is necessary
for a more efficient ray/ob-
ject intersection testing, as now
only triangles from the same
voxel element have to be evalu-
ated. In a second step, footage
sounds and HRIR filters are
loaded as floating point tex-
tures into graphics memory
and are decomposed using

windowed sinc filters with their cutoff frequencies set to the bands respective border
frequencies, refer also to Section 8.2.2 and Table 7. Furthermore, sound data is assigned
to virtual speakers as well as a position and an emittance pattern.

The actual casting of rays and the energy accumulation is performed using cube
maps that are centered around the listeners position (Kaminski, 2007), refer to Figure 65.
These cubemaps sample the scene with one ray cast per cubemap texel. Each ray is
thereby traced through the virtual scene and its acoustic energy is accumulated and
stored per frequency band within the cubemap texel. At points of ray/object intersection,

Figure 65: Cubemap ray tracing/Sampling.

the local surface acoustic energy ex-
change is evaluated according to Sec-
tion 8.4.2. Secondary rays, emanating
from points of refraction, transmission
and/or reflection, are further traced un-
til their energy contribution falls be-
low a certain threshold ε. The final
sound mixdown is performed binau-
rally using the previously decomposed
sound data and HRIR filters. Accord-
ing to the accumulated energy spec-
trum in the cubemap texture, the sound
data is weighted and delayed per fre-
quency band. The frequency bands of
all contributing rays are accumulated
and stored in a two channel texture
(binaural sound buffer), refer to Fig-

ure 64. This sound data is streamed back to the CPU and fills a native OpenAL stereo
buffer for playback. All convolutions, simulations, ray tracing, mixdown and sound ren-
dering are performed using fragment shaders in graphics hardware, with a single shader
for each task. Several of these shaders and additional code examples are discussed in
more detail in Section A.3.

Diffraction and interference are both two phenomena that can be well modeled using
wave-based simulation techniques, but are difficult to capture using ray-based approaches.
Frequency-dependent diffraction effects, however, can be approximated using a ray
bending technique, in which the outgoing ray is bent according to the ray’s associated
frequency band fj. Here, lower frequencies diffract stronger than higher frequency bands.

8.4 ray/energy acoustic simulations 123

Size of Cubemap

8× 8 16× 16 32× 32 64× 64 128× 128

Possible Number of Directions 384 1,536 6,144 24,576 98,304

Simple Box
(80 pol.)

ray tracing only 75.3 fps 72.5 fps 70.2 fps 68.4 fps 63.2 fps

with auralization 23.1 fps 9.7 fps 3.4 fps 0.97 fps 0.27 fps

Church
(800 pol.)

ray tracing only 55.1 fps 44.3 fps 37.8 fps 24.9 fps 18.9 fps

with auralization 12.8 fps 6.2 fps 2.6 fps 0.77 fps 0.24 fps

Apartment
(1, 400 pol.)

ray tracing only 43.1 fps 42.1 fps 42.5 fps 34.2 fps 26.8 fps

with auralization 15.8 fps 7.5 fps 3.1 fps 0.88 fps 0.25 fps

KEMAR
(5, 500 pol.)

ray tracing only 16.8 fps 16.4 fps 16.4 fps 16.4 fps 16.0 fps

with auralization 11.2 fps 6.7 fps 3.0 fps 0.89 fps 0.25 fps

Large Hall
(37, 000 pol.)

ray tracing only 4.2 fps 4.2 fps 4.2 fps 4.2 fps 4.1 fps

with auralization 3.7 fps 3.0 fps 1.9 fps 0.76 fps 0.23 fps

Table 9: Ray Acoustics Efficiency (fps per 44.1kHz).

The amount of diffracted energy is determined individually per frequency band and
depends on the band’s maximum diffraction angle. Figure 63 exemplifies the concept

Demo Reflection.

Demo Refraction.

Demo Diffraction.

and shows a virtual scene from the listener’s perspective (Figure 63a), the constructed
diffraction/edge map (Figure 63c) and the by β diffracted ray from the listener to a sound
source (Figure 63b). The edge map in Figure 63c is constructed by using the scene’s depth
buffer and an image based edge detection algorithm, in which for each edge additional
rays are cast into the scene to perform the diffraction simulation.

Interference describes the superposition of two or more sound waves and the subse-
quent changes in amplitude. By employing a ray-based acoustic simulation, interference
effects can only roughly be approximated using the ray’s length and its center wavelength
λcenterj

(Table 7). Although such a system only allows coarse approximations, the results
can clearly enhance the simulation and provide a more realistic virtual auditory envi-
ronment. More and finer subdivided frequency bands will, nevertheless, improve both
techniques and also allow a finer modeling of frequency-dependent material definitions.

8.4.4 Results and Experiments

Several experiments and tests have been performed to evaluate the quality and the
efficiency of this approach. A more detailed discussion of examples can be found in
Section 9.7, which discusses and compares several room acoustics and virtual HRIR
simulations. KEMAR is a dummy head model that is generally used in acoustics to
measure head-related impulse responses. The results of this simulation can be found
in Section 9.7.2. All evaluations have been performed on the same computer that was
used for assessing the efficiency of the 3D waveguide mesh implementation. Table 9

shows the evaluation results with the number of frames per second (fps) for five different
environments and five cubemap sizes, as well as with and without auralization applied.

124 acoustic rendering

(a) Reflections (Direct, 1st and 2nd). (b) Different Material Settings. (c) Diffraction around Pillars.

Figure 66: Modeling of Sound Wave Propagation Effects.

In acoustics, the term realtime is defined as an update rate of 10Hz or more (Funkhouser
et al., 1999a), which the system currently achieves for meshes of up to 15,000 polygons.

A cubemap with a size of 32× 32 thereby allows for more than 6,000 possible ray
directions. With the simulation running for all 10 frequency bands, this results in over 60k
convolutions per simulation step, refer to Section 8.2.2. If a direction’s acoustic energy is
below a certain threshold, it does not contribute to the final auralization, and therefore, the
real number of convolutions is vastly reduced. The acoustic quality of smaller cubemaps
is comparable with higher resolutions, even though, some details are only audible using
larger cubemap sizes, especially diffraction effects. The decomposition of sound data and
publicly available HRIR filters was performed using windowed sinc filters with a length
of 512 samples (Gardner and Martin, 2000). As expected, the performance decreases with
the size of the scenario, as more triangles have to be checked for intersection. An update
frequency of at least 10Hz is reached easily for smaller scenarios, but fails for the large
hall. A better acceleration structure with a non-uniform subdivision, such as kD trees,
might solve this problem.

Figure 66 displays three visualizations of sound wave propagation effects from the
ray acoustics system. Here Figure 66a and Figure 66b display direct, 1

st and 2
nd order

reflections with different material settings applied, whereas Figure 66c shows diffraction
effects around several wooden pillars. The simulation results are visualized in the
unfolded cubemaps and display the frequency range of 22Hz - 320Hz (Figure 66c). The

Original Sound.

Lowpass Filtered.

CC Simulation.

BCC Simulation.

red/brown shifting in color in all cubemaps denotes a stronger transmission/diffraction
in the lower frequency end.

8.5 analysis and discussion of the results

The goal of this research was not to develop a new and more efficient library for 3D
sound rendering and simulation, but to discuss these simulations in the context of
the special requirements for an auralization of 3D virtual auditory environments. As
these environments entirely rely on sound and acoustics to convey abstract data and
information, the techniques employed have to fulfill certain requirements: This is on
one hand a more accurate and efficient 3D sound rendering and simulation of room
acoustics, but also a non-realistic design of the auditory environment and an exaggeration
of certain sound propagation effects. As currently available sound rendering APIs only
emulate real sound wave propagation to a certain degree, this chapter examined the
possibilities for a more efficient and especially for a higher quality 3D sound rendering
and room acoustics simulation. Candidates were found in the realm of 3D computer

8.5 analysis and discussion of the results 125

graphics through the exploitation of programmable graphics hardware. The results from
Section 8.2, Section 8.3 and Section 8.4 clearly show the advantages of a graphics-based
implementation. Besides an improved computational efficiency, also the quality of the
examples – see here also Section 9.7 – are very promising and strongly encourage a
further research in this direction. Using the results and example implementations in this
chapter, it was shown that even the highest demands of 3D virtual auditory environments
regarding sound rendering and simulation can be fulfilled.

(a) Rectilinear Grid Frame 50. (b) BCC Grid Frame 40.

Figure 67: 3D Waveguide Meshes – Wavefront at t = 50.

The sound examples on the left allow to listen to several results of a simulation using
the Cartesian and the BCC lattice. The examples provide the original sound and a low-
pass filtered version, as well as the convolved results of both lattices. The implementation
of the 3D waveguide technique in Section 8.3 was realized using two different mesh
topologies. Figure 67 and Figure 68 visually compare the differences of both lattices
using the example from Figure 61. The visualization of the BCC lattice is not aligned
with an axis of propagation, but displayed as a rectilinear grid and sliced along the z
axis. The visualizations clearly show a very similar wave propagation at the beginning,
which, however, diverges as the animation continues. This is due to the differences in the
mesh topologies, as well as the wave propagation itself. The BCC lattice has a smaller
dispersion error and propagates the pressure along 4 instead of just 3 axes. This can be
very well seen in Figure 67, which shows a much smoother wave front for the BCC lattice.
The coarser resolution is due to the optimal sampling scheme, which requires only 70% of
the sampling points to represent the same information, refer Section 8.3.2. The simulation
runs approximately

√
2 faster than the implementation of the rectilinear grid.

8.5.1 Combining Ray- and Wave-based Techniques

The discussed ray- and wave-based approaches have their respective advantages and
drawbacks and are both only applicable to certain parts of the audible frequency range.
A combination of the two techniques would allow each method to perform at its peak
efficiency and both simulations to complement each other. Depending on the rooms size
and the objects therein, a certain threshold (overlapping frequency part) needs to be
defined where both techniques are still applicable. The propagation of lower frequencies
is simulated using 3D waveguide meshes, while the middle and higher frequencies
are approximated using ray acoustics and the here described ray tracing techniques.
Alternatively, both techniques can also be combined in a different way. The waveguide
technique would have to be changed towards a boundary element method (BEM) and

126 acoustic rendering

(a) Rectilinear Grid Frame 400. (b) BCC Grid Frame 325.

Figure 68: 3D Waveguide Meshes – Wavefront at t = 400.

would now only be applied in the direct vicinity of objects, sound sources and listeners.
This would allow a disposal of all waveguide nodes positioned in free space and those
which are far away from any object or sound source. At the same time, a decrease of the
internodal sampling distance can be performed to achieve a higher sampling frequency
for the remaining waveguide meshes. Ray tracing techniques can be used to connect
the individual meshes and to transmit and propagate the acoustic energy over larger
distances. Ideal for a realization would be an SLI2-based graphics system, in which each
graphics board is assigned one of the simulation techniques and later both results are
combined into a single impulse response. In order to be employed for a continuous
auralization, the update frequencies of both techniques have to be aligned.

Intensity

Time

Impulse Response

Echogram

Figure 69: Comparison of Ray- and Wave-based Acoustics Simulations.

Figure 69 shows a direct comparison of both implementations. It displays an echogram
(top) of the ray acoustics system and a measured room impulse response (bottom) using
3D waveguide meshes. The room depicted is the same as displayed in Figure 67, and was
initialized in both simulations with the same parameters. Even though both techniques are
designed for different frequency ranges, the major features of the frequency responses are
clearly visible in both results. As this additionally proves the viability of both approaches,
it also demonstrates the great potential for a combination of both techniques.

2 Scalable Link Interface refer http://developer.nvidia.com

http://developer.nvidia.com

