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Abstract
This work describes a new approach of rendering multiple perspective images inspired by cubist art. Our imple-
mentation uses a novel technique which not only allows an easy integration inexisting frameworks, but also to
generate these images at interactive rates. We further describe a cubist-style camera model that is capable of em-
bedding additional information, which is derived from the scene. Distant objects can be put in relation to express
their interconnections and possible dependencies. This requires an intelligent camera model, which is one of our
main motivations. Possible applications are manifold and range from scientific visualization to storytelling and
computer games.
Our implementation utilizes cubemaps and a NURBS based camera surface tocompute the final image. All pro-
cessing is accomplished in realtime on the GPU using fragment shaders. Wedemonstrate the possibilities of this
new approach using artificial renditions as well as real photographs. The work presented is work in progress and
currently under development. To illustrate the usability of the method we suggest several application domains,
including filming, for which this technique offers new ways of expression and camera work.

1. Introduction

The familiar representation of objects in our environment is
that they usually face us with one side only, except they are
viewed from odd angles or mirrored in reflective surfaces.
An often expressed desire of artists and scientist throughout
the centuries was the combination of different viewpoints of
objects and scenes into a single image. Cubism was one of
the biggest art movements that explicitly focussed on these
characteristics. Cubism was developed between about 1908
and 1912, and a collaboration between Pablo Picasso and
Georges Braque. The cubistic movement itself was short and
not widespread, but it started to ignite a creative explosion
that resonated through all of 20th century art and science.
The key concept of Cubism is that the essence of objects
can only be captured by showing it from multiple points of
view simultaneously, thus resulting in pictures with multi-
ple perspectives [9]. Other examples can be found in ancient
panoramic drawings of China and the work from M.C. Es-
cher and Salvadore Dali.
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Figure 1: Super Fisheye View. (Cubemap from [29])

Fascinated by these ideas and possibilities, many artists
and scientists picked up the concept of multiple perspectives,
extended it or adopted it to new areas. With the technologi-
cal advances and the increased flood of images in the recent
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decades,new ways of looking at objects are more impor-
tant than ever. Cubism might be able to provide a solution
to this problem by combining the information of several im-
ages into one. Although cubistic images challenge the eye
and the mind by its unnatural representation of objects, yet
it can be more efficient in the visualization of certain ac-
tions and events. Several lines of research have evolved that
focus on the generation and the useful utilization of cubist-
style imagery, including art, science and especially computer
graphics.

One of our main motivations for the development of a
cubist-style camera model was the desire of an intelligent
camera system, which is able to select the most important
views of a scene and combines them into a single image or
animation. This key feature of Cubism has already been ap-
plied to many applications, including comics and computer
games. Ubisoft extended an existing game engine by addi-
tional comic elements, like insets or onomatopoeia, which
not only amplify the comic like character of the game, but
also add a multi-perspective component to certain scenes
[30]. As Ubisoft used hard cuts between scenes only, we are
interested in camera work and composition techniques that
allow the gradual transition of a single into a multiple per-
spective representation of the environment. Along this re-
search, we are also interested in the narrative possibilities
for conveying additional scene and story relevant informa-
tion. These techniques can also be used for film animations,
to develop new styles of cubistic movies [28].

Many research articles have affected our work, but the
ones that influenced our research most are the publica-
tions by Wyvill [33], Rademacher [27] and especially the
technical report by Glassner [14]. Wyvill et.al. [33] proba-
bly published the first research article in computer graph-
ics concerning alternative, non-planar camera models. Later
Rademacher [27] employed curved camera surfaces by mov-
ing a slit camera along animated pathways. Glassner [14],
and later [12], [13], picked up the same idea and developed
a plugin for 3D Studio MAX to render cubistic scenes. What
we found most impressive in Glassner’s first article [14] was
not the implemented technique nor the achieved results, but
the hand-drawn figures which he used to visualize the idea
and the possibilities of cubist-style rendering, see also Sec-
tion 2.3. So far we have not found any technique capable of
rendering such images, but we believe that it might be pos-
sible using our approach.

As we toyed with the idea of integrating our camera model
into a 3D game engine, to explore the possibilities regarding
the story telling and the game play, we had to find ways for
the interactive rendering of such multi-perspective images.
Our system uses environment mapping and a flexible cam-
era surface for the rendering. The scene is rendered through
six cameras, which are used to compile a cubic environment
map of the scene. At the moment we experiment with static
cameras only, but a realtime update of the cubemap is pos-

sible. The camera surface is described by several NURBS
functions, which model a smooth and flexible film surface.
This surface is sampled using fragment shaders on the GPU,
and the final image displayed on the screen. We have devel-
oped several implementations, including some optimization
to reduce the number of computations.

The paper is organized as follows: The next section gives
an exhaustive overview of related work and discusses non-
planar camera models with single and multiple perspectives.
We start with a retrospective of the classic, single perspec-
tive camera model which leads over to distortion techniques
like fisheye lenses, and finally converges in the discussion
of multiple perspective rendering algorithms. The section is
closed with remarks towards the rendering of cubist-style
images. The following two sections explain our approach en
detail, with Section 3 focussing on the theoretical aspects
and Section 4 highlighting the implementation details. Sec-
tion 5 presents results and shows images that were generated
using our technique. In addition, we show performance re-
sults and discuss optimization issues. Finally, in Section 6
we conclude the paper and summarizes the work and point
out areas for future improvements.

2. Non-planar Camera Projections

Most computer imagery is created using classic, single per-
spective camera models. The first camera developed was the
camera obscura, a simple pinhole camera which is known
to artists and scientist since antiquity [9]. Pinhole cameras
only use (a very small) aperture and create a fully reversed
picture on the opposite side of the hole. This simple model
was further extended over the centuries and finally used by
the Lumière brothers in the late 19th century to create the
first moving pictures [4], [9].

From a computers perspective, the classic camera model
is defined by the cameras position and orientation, as well
as the cameras aperture angles. Another interesting feature
are the number of vanishing points: points at which paral-
lel lines run off into the horizon. As these points define the
cameras perspective, a different number of vanishing points
are often used depending on the application. Examples can
be found in CAD systems and computer games, where per-
spectives with varying numbers of vanishing points are used,
often depending on the game genre [21].

Besides the perspective camera model, scientist, and es-
pecially artists, have worked on alternative representations
for object and entire scenes. Da Vinci, Dali, Escher and
Picasso are the most prominent who worked on different
views and variant camera models. With the advances of com-
puter graphics, this topic moved into the focus of several
researchers working in computer science. Wyvill first dis-
cussed alternative camera models in computer graphics by
using a flexible camera surface and a raytracing algorithm
for the rendering [33]. Reinhart developed a new filming
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technique by swapping spatial and temporal axes of the me-
dia. Depending on the cameras orientation, it allowed him to
visually accelerate or decelerate certain actions [28].

The next sections discusses several existing camera mod-
els which employ a non-planar camera surface or an image
distortion technique. We first start with a discussion on sin-
gle perspective camera distortions, which we later extend to
multiple perspectives. The end of this section focusses on
Cubism and true cubistic rendering techniques.

2.1. Single Perspectives

Several image distortion techniques have been developed
that conserve a single point of view, but are able to focus on
specific parts of an image for highlighting purposes. These
approaches can be divided into object-space and image-
space techniques. As the names suggest, object-space tech-
niques distort the underlying model (3D mesh) in order to
enhance certain parts, while image-based methods work on
the rendered image and eventually employ an additional
camera.

Diverse articles on mesh distortion have been published,
in which the underlying 3D model is deformed depending
on the viewers orientation or for accentuation. This includes
the research on view dependent geometry by Rademacher
[26], in which key viewpoints are used to deform the mesh
according to the current perspective. Martin et.al [20] im-
plemented a similar system to simulate sketchy illustrations.
Isenberg [17] developed a system that applies two dimen-
sional distortions in order to create 3-dimensional variations
of stroke based models and 3D polygonal meshes. The ap-
plications, for which all of these systems were designed for,
are sketchy/illustrative rendering of 3D models and mesh an-
imation. Another interesting implementation of mesh distor-
tions are the zooming techniques developed by Raab [25]
and Preim [24]. These techniques allow the accentuation of
certain parts of a model using a fisheye zoom, as well as the
drawing of explosion and implosions diagrams to visualize
the construction of the scene.

In addition to object-space distortions, several image
based techniques have been developed. Some of them are
concerned with the utilization of additional lenses to high-
light and magnify certain portions of the images. A classic
technique is the use of fisheye lenses to extend the range
of classic camera systems [19], [4]. A similar method was
presented by Carpendale et.al [5], who applies additional
lenses on rendered images to magnify parts of the image.
Additional object-space techniques were developed to allow
a supplementary focus on particular mesh objects. Another
object/image-space technique is the RYAN system with the
Boss camera, which is integrated into the Maya rendering
package [7]. Although it includes mesh distortions, it gener-
ally focusses on the deformation of the projections to render
artistic, nonlinear images. Other techniques focus on special

camera work and the animation of still pictures. Horry et.al.
[15] designed a system that utilizes a spidery mesh and al-
lows a "Tour into a Picture". Based on this principle Chu
et.al. [6] extended this technique and developed a multiple
perspective camera system for animating Chinese landscape
panoramas. Opposed to the previously discussed techniques,
Böttger explores the possibilities of combining very small
and very large scale scenes together by using a logarithmic
approach [3]. Furthermore, he develops a system to visualize
the visual examination of objects.

2.2. Multiple Perspectives

While the last section discussed methods using single per-
spectives only, this section focusses on composing several
viewpoints together into one image. Although the underly-
ing principle is the same, these methods can be used for two
kinds of multi-perspective rendering: object and scene cu-
bism. The first shows an object from different angles and
allows the perception of several sides of this object simulta-
neously. The other technique is used to combine several ob-
jects of a scene and to visually re-arrange them. Regarding
a flexible camera surface that captures the environment, the
first technique uses a more concave surface, while the sec-
ond utilizes a more convex shaped area. To exemplify this
idea, the camera surface of a true fisheye lens would have a
spherical appearance.

A simple technique that allows an easy rendering of multi-
projection images is the slit camera system, that was dis-
cussed by Glassner [14] and is also used in many other im-
plementations [27], [34]. As the name suggests, a slit camera
only exposes parts of the film (a slit) at a time by simultane-
ously moving the camera along an animated path. Glassner
implemented a multi-perspective camera system using two
NURBS surfaces (eye and lens) as render plugin for 3D Stu-
dio MAX, and used the internal raytracer for the image gen-
eration [14]. Wood et.al. describe a method for simulating
apparent camera movements through 3D environments [32]
by employing a multi-pinhole camera system and image reg-
istration. The technique is used to render multi-perspective
panoramas and motivated with the utilization for cel anima-
tions. Rademacher discusses Multiple-Center-of-Projection
images and develops a rendering technique by using a slit-
camera approach and image registration [27]. The proposed
method works equally well for real-world, as well as for ar-
tificial data sets. A similar system for the direct rendering of
multi-perspective images was proposed by Yu at.al. which
includes a sampling correction scheme to minimize distor-
tions [34].

In addition, Agrawala et.al. [1] discuss a rendering sys-
tem for multi-perspective rendering with the focus on artistic
image generation. They designed a tool that uses local cam-
eras and allows the re-orientation of each object individu-
ally in the final composition, thus rendering multi-projection
images. A raytracing method of rendering multi-perspective



4 M. Spindler and N. Röber and A. Malyszczyk and T. Strothotte /Flexible Film: Interactive Cubist-style Rendering

Figure 2: The Seattle Monorail as seen from a cubistic viewpoint. (from [14])

images was proposed by Vallance et.al. [31]. He provides
an extensive overview of multi-perspective image generation
and proposes an OpenGL like API for rendering such images
using a flexible Bézier camera surface and raytracing.

2.3. Cubist-style

The essence of Cubism is often referred to the presentation
of objects from multiple angles, therefore composing several
points of view into one single image. These view points are
combined as facets of different perspectives and act as a grid
like structure of the image. The term Cubism was first used
by the French art critic Louis Vauxcelles, as he described the
work as "bizarre cubiques". Subsequently, a name for this art
movement was defined [9].

The majority of research articles discussed so far was only
concerned with the first point of cubism: the rendering of im-
ages with multiple centers of projection. Only very few are
true Cubist-style rendering techniques, including the work
by Collomosse et.al [8] and Klein at.al. [18]. The system by
Collomosse uses several 2D images, showing an object from
different viewpoints, and image registration of salient fea-
tures to compose the final result. This composition is addi-
tionally rendered using a painterly effect to closely mimic
the effects of true cubist art. A different approach is de-
scribed by Klein et.al. [18] who utilizes a video cube, similar
to Reinhart [28], to render multi-perspective images. Similar
to the work of Collomosse, the resulting compositions are
further modified trough stylistic NPR drawing techniques,
including painterly effects and mosaics.

Besides the rendering of true cubist art, the most intrigu-
ing feature seems to be the composition of several view-
points into one image. This can be easily derived from
the number of articles focusing on this topic, but also on
the applications that were developed for it. From all re-
search articles we have seen, we found the hand-drawn

images of Glassner’s paper, see Figure 2, to be the most
impressive [14]. Although their are not computer gener-
ated, we see them as our goal for the rendering of mul-
tiple perspective imagery. A characteristic that these im-
ages posses and all others lack is the natural, organic look
through non-photorealism. A direction for future research
therefore should be the integration of additional NPR draw-
ing styles and the generation of non-perfect images. Non-
photorealistic rendering has established itself as an indecent
area of research and successfully applied to many areas [11],
[10].

In our implementation we are currently focussing on
the first aspect of Cubism only: the rendering of multi-
perspective images, but our framework already allows the
additional input of NPR techniques. At the moment we find
it more challenging to work with the camera model itself,
and to research the possibilities for narration and story-
telling.

3. Flexible Film

In this section we explain and discuss our Flexible Film cam-
era model and the related techniques in algorithmic depth.
The following Section 4, comes back to the here discussed
methods and presents implementation details and code frag-
ments.

As illustrated earlier in the introductory part, our goal is
to create an intelligent camera system, which can be inte-
grated into 3D environments, like game engines, and which
support the user by generating meaningful images that en-
hance the depicted scene. Our current work describes the
rendering part of this system, which is able to produce multi-
projection images in realtime. At the moment, this method
only works for static cameras, i.e. cameras that stay at a fixed
location, but we have already explored the possibilities for
the extension towards dynamic scenes. A difficulty in multi-



M. Spindler and N. Röber and A. Malyszczyk and T. Strothotte /Flexible Film: Interactive Cubist-style Rendering 5

perspective camera systems is the control of the camera it-
self, especially for camera movements and animations. Here
we have developed a very simple, yet effective technique,
which will evolve into an API that can be easily integrated
in existing applications.

Our method is a mixture between image based and direct
rendering. The environment is represented through a cube-
map, which is compiled prior the actual rendering process.
Thus, our method can be described as image based render-
ing. In addition, the cubemap can also be updated during
the rendering process, which allows the representation of dy-
namic scenes and camera movements, hence our method is
similar to direct rendering. A flexible camera surface, which
we callFlexibleFilm, is placed within and used to lookup the
cubemap, depending on the actual shape of the mesh. This
surface is described by NURBS functions and implemented
into a Cg fragment shader. This allows an easy and interac-
tive rendering of multiple perspective images.

The next two sections describe our Flexible Film system
in algorithmic depth. While the first section focusses on the
surface sampling and the necessary techniques, the second
one describes our camera model, which sits on top of the
surface and is used to control the flexible camera surface.

3.1. Surface Sampling

The heart of our rendering system is the flexible camera sur-
face that is used to sample the cubic environment in order to
determine the final composition. This surface is represented
by a NURBS function and sampled each rendering cycle us-
ing a Cg fragment shader and a customized fragment stage.

We proceed as follows: After placing an orthographic
camera at position(0,0,1) looking into the negativez di-
rection, we draw a quad atz= 0 that entirely fills the screen.
Then, we assign texture coordinates to its four corners rang-
ing from (0,0) to (1,1), where the former one is the lower
left corner and the latter the upper right corner. This al-
lows us to arithmetically walk through a normalized NURBS
surface, which is typically defined in this specific domain.
By abusing fragment shader, we plug the incoming interpo-
lated texture coordinates(u,v) into the Bernstein form as de-
scribed in equation (1) to determine the surface points, with
Bn

i (t) being the well-known Bernstein polynomial as defined
in equation (2) andPi, j representing the associated control
points.

S(u,v) =
m

∑
i=0

Bm
i (u)

n

∑
j=0

Bn
j (v) Pi, j , (1)

Bn
i (t) =

n!
i!(n− i)!

t i(1− t)n−i (2)

In addition, to assure correct reflection mapping, we need to

compute the surface normals, which can be derived by the
partial derivatives defined in equations (3) and (4).

∂S(u,v)
∂u

= m
n

∑
j=0

Bn
j (v)

m−1

∑
i=0

Bm−1
i (u)[Pi+1, j −Pi, j ] (3)

∂S(u,v)
∂v

= n
m

∑
i=0

Bm
i (u)

n−1

∑
j=0

Bn−1
j (v)[Pi, j+1−Pi, j ] (4)

The surface normalN at (u,v) can then be computed as:

N(u,v) =
∂S(u,v)

∂u
×

∂S(u,v)
∂u

(5)

Finally, we compute the reflection vectorR(u,v), which we
use as the input vector to lookup the cubemap.

R(u,v) = S(u,v)−2(N(u,v) ·S(u,v))N(u,v) (6)

An alternative approach for derivingS(u,v) andN(u,v)
is the recursive deCasteljau algorithm, which we are not de-
scribing here. The concept as well as a more general discus-
sion about NURBS and Bézier patches can be found in [23].

3.2. Flexible Camera

As we use a NURBS surface as ourFlexible Filmpendant,
we need a more intuitive way to define the cameras parame-
ters than by just specifying the corresponding control points.
Therefore, we included an additional abstraction layer and
developed a camera model, which is set above the NURBS
surface and computes the required control points. This ap-
proach is also advantageous for design an API, which can be
later integrated into a game engine or other applications and
used to control the camera model. This camera model is still
work in progress, but we believe the results are promising
already. Figure 3 shows a preliminary version of the camera
interface.

Figure 3: The camera model.

At this point of development, our camera model consists
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of a set of standard, single perspective cameras that are con-
nected by a flexible mesh. Each camera has its own param-
eters, like size, orientation and direction, that can be intu-
itively controlled by our interface, see Figure 3. This allows
the control of the NURBS surface by just defining the as-
sociated cameras and can easily be integrated into an exist-
ing application, like a game engine. One limitation of the
current model is the fixed size of the connecting mesh. Ide-
ally, the camera model would support not only a flexible, but
also a rubber like surface, so the film can be stretched over
the scene, intuitively describing which parts of the film are
warped and which are normal. Refereing back to Glassner’s
drawings, Figure 2, this technique would support a rendering
in this manner.

From the just introduced model two problems arise, which
we are discussing in the next two sections. The first prob-
lem, theStitching Problem, is the correct computation of the
patches connecting each camera view, and the second, the
Domain Problem, is a change in the domain of the NURBS
patch describing the Flexible Film.

3.2.1. Stitching Problem

To allow a smoother transition between the single cameras,
additional NURBS patches are needed that stitch the exist-
ing cameras together. To simulate a “continuous as possible
appearance” of the Flexible Film surface, at leastC1 con-
tinuity is required. This can be achieved by applying con-
straints on the appropriate control points. As illustrated in
figure 4, only the control points on the border between the
two patches (am,j = b0,j) must be shared forC0 continuity. If

C1 continuity is needed, an additional row of control points
must be shared by each of the two patches:am−1,j andb1,j,
which in addition have to be collinear withb0,j.

Figure 4: Stitching together two NURBS patches. (from [2])

3.2.2. Domain Problem

As lined out in the beginning of the section, a rectangle
(GL_Quad) is drawn in full screen size and used to sam-
ple the Flexible Film’s surface. This procedure is not pos-
sible if the Flexible Film is composed of a set of NURBS

patches, since each single NURBS patch is defined in the
(0,0)− (1,1) domain. Our current solution to this problem
is to restrict the ”up” vector of the cameras to always point
in they direction. This prevents any patch to be non-aligned
with the screen axes and we simply need to draw a rectangle
for each patch at the appropriate screen positions defined by
the cameras. A more elegant solution would be a normaliza-
tion of the Flexible Film’s surface to completely lie within
(0,0)− (1,1).

4. Realtime Implementation

In our current implementation we use Coin3D [16] as scene-
graph and the Cg language for shader programming. Be-
cause the current version of Coin3D did not support any
mechanism for GPU shader integration, we decided to im-
plement the necessary OpenInventor nodes ourself and con-
tributed them to Coin. They are expected to be an inte-
gral part in the next release. Unfortunately, as only static
cubemaps are momentarily supported by Coin, we could
not extend our current implementation to integrate dynamic
changes of the scene or camera movements. We are currently
working on a solution to this problem, but have also written
a simple Glut application to verify the feasibility of this ap-
proach. We found the dynamic changing of the cubemaps
easy to realize and computationally not to expensive.

In the following, we describe different implementations
of a Bernstein polynomial based NURBS surface sampling
as described in Section 3.1. Although we additionally im-
plemented the alternative deCasteljau algorithm, as used in
the Mesa [22] implementation for the automatic generation
of NURBS normals, we will not discuss its details here. All
shader programs are written in the Cg language.

4.1. Straight-Forward Bernstein

The overall running time of the rendering system is mainly
affected by the complexity of the fragment shader used.
Therefore, we decided to implement the NURBS with 4×4
control points, as this seems to be a good balance between
quality issues and speed. Due to the simplicity of a straight-
forward implementation, we are not going into details here,
and refer to the next section where we discuss several opti-
mizations to increase the rendering speed.

4.2. Optimized Bernstein

As the equation (1) is separable, each of the Bernstein poly-
nomialsB4

i (u) andB4
j (v) can be computed independently as

described in equation (2). The appropriate fragment shader
code is shown in listing 1, whereu andv are the incoming
texture coordinates from the rectangle.
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f l o a t bernU [ 4 ] = {1 .0 f , 3 .0 f , 3 . 0 f , 1 . 0 f } ;
f l o a t bernV [ 4 ] = {1 .0 f , 3 .0 f , 3 . 0 f , 1 . 0 f } ;
f l o a t uu = 1 .0 f − u ;
f l o a t vv = 1 .0 f − v ;

f o r ( i =0; i <4; i ++) bernU [ i ] ∗= pow ( u , i ) ∗

pow ( uu , 4− i ) ;
f o r ( j =0; j <4; j ++) bernV [ j ] ∗= pow ( v , j ) ∗

pow ( vv , 4− j ) ;

Listing 1: Computation of B4i and B4
j

According to equation (1) the surface pointS(u,v) can then
be computed usingbernU[] andbernV[] as shown in
listing 2, wherectrlPoints[] represents the 16 incom-
ing control points.

f l o a t 3 p o i n t = f l o a t 3 ( 0 . 0 f , 0 .0 f , 0 . 0 f ) ;
f o r ( j =0; j <4; j ++)

f o r ( i =0; i <4; i ++)
p o i n t += ( bernU [ i ] ∗ bernV [ j ] ) ∗

c t r l P o i n t s [ i∗4+ j ] ;

Listing 2: Computation of S(u,v)

For the surface normalN(u,v), we need to compute the par-
tial derivatives according to the equations (3) and (4). Since
both implementations are conventionally equal, we only de-
scribe our implementation of equation (3). The appropriate
fragment shader code is shown in listing 3. As before, we
can use the separability property of equation (3). Since we
can reuseB4

j (v) we only need to computeB3
i (u), which is

done in the first three lines of the shader.

f l o a t bernDU [ 3 ] = { 1 .0 f , 2 .0 f , 1 . 0 f } ;
f o r ( i =0; i <3; i ++)

bernDU [ i ] ∗= pow ( u , i ) ∗ pow ( uu , 3− i ) ;
f l o a t 3 du = f l o a t 3 ( 0 . 0 f , 0 .0 f , 0 . 0 f ) ;
f o r ( j =0; j <4; j ++)

f o r ( i =0; i <3; i ++)
du += ( bernV [ j ] ∗ bernDU [ i ] ) ∗

( c t r l P o i n t s [ ( i +1)∗4+ j ] −

c t r l P o i n t s [ i∗4+ j ] ) ;

Listing 3: Computation of∂S(u,v)
∂u

Finally, we can put together all code fragments to obtain a
working Cg fragment shader (see listing 4). For the com-
putation ofR(u,v), as described in equation (6), we simply
exploit the Cg functionreflect().

4.3. Cached Bernstein

Although the optimized Bernstein implementation from the
previous section already provides a better performance,
compared to the straight-forward implementation, there are
still some computations which can be saved.

Much time of the algorithm is spend on computing
the Bn

i (t) terms, which typically do not change from
frame to frame and more importantly, they are indepen-
dent of the control points. By storingbernU[], bernV[],
bernDU[], andbernDV[] in one dimensional textures
(sampler1D), the computation can be swapped out in a one
time preprocessing step on the CPU. The computed data is
simply loaded as 1D textures and accessed through the eval-
uation of the fragment code.

f l o a t 4 main ( i n I n p u t IN ,
un i fo rm f l o a t 3 c t r l P o i n t s [ 1 6 ] ,
un i fo rm samplerCUBE cubeMap )

: COLOR
{

f l o a t u = IN . tex0 . x ;
f l o a t v = IN . tex0 . y ;
i n t i , j ;

/ / compu ta t i on o f bernU / bernV ( L i s t i n g 1)
/ / compu ta t i on o f ’ p o i n t ’ ( L i s t i n g 2)
/ / compu ta t i on o f ’ du ’ ( L i s t i n g 3)
/ / compu ta t i on o f ’ dv ’

f l o a t 3 norm = n o r m a l i z e ( c r o s s ( du , dv ) ) ;
p o i n t = r e f l e c t ( n o r m a l i z e ( p o i n t ) , norm ) ;
re turn texCUBE ( cubeMap , p o i n t ) ;

}

Listing 4: Complete fragment shader

5. Results

Although, we present work in progress, some preliminary re-
sults are available, which we would like to share and discuss
in this section. Additional information about this project, as
well as more examples can be found on our website†. We
will update this website as soon as possible and hopefully
present the first animations shortly.

As our method is a mixture between image based and di-
rect rendering, it is easily possible to use either artificial,
computer generated data sets, or real-world photographs as
input. All computations were performed on a Linux com-
puter running Suse 8.1 with the latest Linux diver for nvidia
based graphics hardware (driver version 66.29). The com-
puter is equipped with an AMD Athlon 860 MHz with 384
MB of Main Memory and an nvidia QuadroFX 2000.

The first example shows some kind of a super fisheye lens
that displays a complete scene overview, Figure 5. Although
the room is distorted, one can easily recognize the walls,
the windows and the material it is build off. Examples were
these type of images are useful are scene overviews in var-
ious applications. In order to provide a smooth transition of

† http://isgwww.cs.uni-magdeburg.de/
~spindler/wiki/cubism
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Screen Resolution Normal Computation (Y/N) Simple NURBS deCasteljau Implementation Optimized Bernstein

1024x768 Yes - 8.775 8.568

1024x768 No 7.939 10.775 20.771

800x600 Yes - 13.997 13.837

800x600 No 13.014 15.318 30.571

640x480 Yes - 20.234 21.331

640x480 No 20.218 24.277 51.580

Table 1: Performance Results

Figure 5: Scene Overview. (Cubemap from [29])

the normal screen to thisfull screen, an animation should be
used, which changes the NURBS control points and trans-
forms the camera surface into a fisheye lens.

Figure 6: Object Cubism.

The next example, Figure 6, is a composition of differ-
ent views of a virtual reconstruction of an ancient building
[10]. The images are rendered with 3D Studio MAX using

six cameras that captured the building from all sides. This is
an example of object cubism, in which several viewpoints of
an object are composed into one single image.

Figure 7: Fisheye View.

The last example, which is similar to Figure 1, pictures
the main place and the cathedral of our city, Figure 7. This
scene was also modelled with 3D Studio MAX and displays
a view which was often used in the antiques to draw maps
and landscape overviews. The main center is drawn in focus
while the surrounding objects vanish.

5.1. Quantitative Results

In this section we want to compare the performance results
of the implemented techniques. We have in total four slightly
different algorithms: the simple NURBS implementation,
the deCasteljau, an optimized Bernstein and a cached Bern-
stein implementation. Unfortunately, we are not finished yet



M. Spindler and N. Röber and A. Malyszczyk and T. Strothotte /Flexible Film: Interactive Cubist-style Rendering 9

with the fully testing of the cached Bernstein implementa-
tion, but the preliminary results we have so far show tremen-
dous speed improvements. Although these speed gains are
only valid as long as the control points are unchanged, but
in most cases only one or few control points are changed
simultaneously.

Table 1 shows the performance results for the straightfor-
ward NURBS implementation, as well as for the deCastel-
jau algorithm and the optimized Bernstein implementation.
As can be seen from these results, that the implemented op-
timizations really pay off and that the achieved rendering
speed is sufficient for an integration into a game engine.
Some speed drawbacks will occur in future version, if dy-
namic cubemaps are used and additional computations have
to spend on the cubemap rendering.

6. Summary and Future Development

We have presented a new technique for the realtime render-
ing of cubist-style images. The rendering performs in real-
time on advanced graphics hardware, with an average frame
rate of about 20 to 30 frames per second. We experimented
with varying implementations of NURBS surfaces and pro-
vided some optimization techniques to gain additional speed
improvements. We showed that the proposed technique is
useful for real world photographs, as well as for computer
generated images. The presented method can be applied to
either object or scene multi-perspective rendering.

The possibilities for future improvements of the presented
technique are manifold. Concerning the realtime rendering,
the next steps are the extension of the algorithm to use dy-
namic cubemaps and therefore an animated camera model.
This requires an extension of the existing camera and adapta-
tion of the user interface to allow dynamic scene settings. In
addition, as the cubemaps are sampled throughout the ren-
dering process, aliasing or pixel artifacts might occur. The
quality of the current implementation is good enough for re-
altime rendering, but to achieve a higher image quality, cu-
bic interpolation can be implemented and used instead of the
hardware supported linear filtering.

Furthermore, the presented techniques have to be evalu-
ated within real applications. Here, we will focus on two ap-
plications: the integration into a computer game engine to
explore the possibilities for story telling and game play and
to develop a brief story for a short film, which is based on
the main concept of our multiple perspective camera model.
In both applications, the flexible camera model will only
be employed in cases where the utilization is beneficial. As
our camera model allows the simulation of a conventional
perspective camera system, these scene transition should be
easy to implement.
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