
Visualization of Fuel Cell Simulations

Niklas Röber
Otto-von-Guericke-Universität, Magdeburg

Diplomarbeit

nroeber@cs.uni-magdeburg.de

November 30, 2002

ii

ii

This work is dedicated to my parents.
Diese Arbeit ist meinen Eltern gewidmet.

iii

iv

iv

Abstract

Visualization plays an important role in the analysis of scientific data sets.
Here computer graphics can be used as a tool to extract information and
to transform abstract data sets into meaningful images. While many good
visualization techniques are known, the interactive display of huge time-
varying data sets is still a challenging task.

This thesis develops a visualization pipeline that uses several different com-
pression techniques to increase the rendering performance and to allow a
more interactive visualization of large data sets. The data which is used for
this is a numerical simulation of a fuel cell. This data set is multiparametric
and consist of five scalar and one vector data set. In the second part of the
thesis, some visualization techniques for the display of such data sets are
discussed and evaluated on the fuel cell example.

v

vi

vi

Zusammenfassung

Die Visualisierung spielt eine grosse Rolle bei der Auswertung wissenschaft-
licher Datensätze. Techniken und Methoden der Computer Graphik können
hier effizient genutzt werden um abstrakte Datensätze in aussagekräftige
Bilder zu verwandeln. Obwohl viele gute Visualisierngstechniken bekannt
sind, ist die interaktive Darstellung grosser Datensätze noch immer schwierig.

Ziel dieser Dimplomarbeit war es einen Algorithmus zu entwickeln, der es
unter Zuhilfenahme von Komprimierungstechniken ermöglicht grosse Daten-
sätze interaktiv darzustellen. Der Datensatz welcher hierzu als Beispiel
genutzt wurde ist die numerische Simulation einer Brennstoffzelle. Dieser
Datensatz ist ausserdem multimodal und besteht aus 5 Skalaren und einem
Vektordatensatz. Im zweiten Teil der Dimplomarbeit werden einige Tech-
niken zur Visualisierung solcher Multiparameter Datensätze erläutert, und
am Beispiel des Brennstoffzellen Datensatzes erklärt.

vii

viii

viii

Acknowledgement

I would like to take the opportunity to say thank you to a few people who
helped me in the writing of this thesis and throughout my studies. First of
all, I would like to thank my family, my parents and my brother for their
huge support, not just financially, but also for their motivation and encour-
agement.
Many thanks also to all who helped me with brainstorming, programming,
writing or just talking, especially Torsten, Reza, Steve, Melanie, Ken and
Ali to name a few. Special thanks also to the entire GrUVi lab, which was
the best place for me to perform my research. The lab was full of support
and everyone always had a minute to share. I will definitely miss this atmo-
sphere.
Also many thanks to everyone from my home university in Magdeburg for
their invaluable support to make this possible. I would like to name ev-
eryone, but I only have space for a few who most influenced me with their
work, motivation and encouragement: my supervisors and tutors Thomas
Strothotte, Floh and Roland, as well as Jörg, Maic, Stefan, Bert and Klaus
Toennies.
A very special thanks to all my friends who motivated me and tried to dis-
tract me from focusing too much on my thesis, especially Steven and Martin.

Selbstständigkeitserklärung

Hiermit versichere ich, Niklas Röber (Matrikel 152946),die vorliegende Ar-
beit allein und nur unter der Verwendung der angegebenen Quellen angefer-
tigt zu haben.

Vancouver, den 30. November 2002 Niklas Röber

ix

x

x

Contents

1 Introduction 3

1.1 Intentions . 4

1.2 Structure . 5

2 Applications 7

2.1 Medical Data . 7

2.2 Scientific Data . 8

2.2.1 Fuel Cells . 9

3 Fundamentals 13

3.1 Volume Visualization . 14

3.1.1 Classification . 15

Colour . 16

Opacity . 17

3.1.2 Volume Slicing . 18

3.1.3 Contouring . 19

3.1.4 Direct Volume Rendering 20

3.2 Signal Theory . 23

3.3 Compression . 24

3.3.1 RLEncoding . 26

3.3.2 Wavelets . 27

1D Haar Wavelet . 28

xi

xii Contents

Basis Functions 29

Compression 31

Extension to nD . 33

3.3.3 Lifting Scheme . 37

Dual and Primal Lifting 37

Inverse Transform . 39

Integer Wavelet Transform 40

3.4 Conclusions . 40

4 Realtime Visualization 43

4.1 Body-Centred-Cubic Grids 45

4.1.1 Optimal Sampling in 3D 48

4.1.2 Optimal Sampling in 4D 51

4.1.3 Slicing D∗
4 . 53

4.1.4 Resampling and Interpolation 54

4.2 Coherency . 56

4.2.1 Bricking . 57

4.2.2 Spatial Coherency . 60

4.2.3 Temporal Coherency 63

4.3 Multiresolution and Compression 64

4.3.1 Wavelets for Cubic Grids 65

4.3.2 Wavelets for BCC Grids 67

4.3.3 Encoding and Storage 68

4.4 Volume Visualization using Texture Mapping 69

4.4.1 Slicing BCC Grids . 73

4.4.2 Visibility Determination 75

4.4.3 Level of Detail . 76

4.4.4 Time-varying Volumes 78

4.4.5 Iso-Surfaces . 79

4.4.6 Classification and Shading 80

xii

Contents xiii

4.4.7 Proxy Geometry . 84

4.5 Conclusions . 85

5 Multiparameter Visualization 87

5.1 Terms and Definitions . 88

5.2 Classic Techniques . 89

5.3 Multiparameter Techniques 91

5.3.1 Scatterplots . 92

5.3.2 Hierarchy . 93

5.3.3 Shadow Projection . 94

5.3.4 Probing . 95

5.3.5 Special Lenses . 96

5.3.6 Customized Glyphs . 98

5.4 Time-Varying . 99

5.5 Focus and Context . 101

5.5.1 Weighting . 102

5.5.2 ExoVis . 103

5.6 Hyperspace . 105

5.6.1 4D Volume Rendering 107

5.6.2 Iso-Surface Extraction in Higher Dimensions 109

5.6.3 Slicing in 4D . 109

5.7 Non-Photorealistic Visualization 110

5.7.1 NPR for Volume Visualization 112

5.7.2 NPR for Flow Visualization 114

5.8 Conclusions . 116

6 Results and Conclusions 119

6.1 Qualitative Results . 121

6.1.1 General Image Quality 121

6.1.2 Compression Quality 125

xiii

xiv Contents

6.2 Quantitative Results . 128

6.3 Multiparameter Visualization 131

7 Design and Implementation 133

7.1 Simple Fuel Cell Visualization 133

7.1.1 Implementation Details 136

7.2 Volume Compression . 137

7.2.1 BCC Grids . 138

7.2.2 Subdivision . 139

7.2.3 Compression and Multiresolution 140

7.2.4 Encoding and Storage 142

7.3 Volume Rendering . 143

7.3.1 Rendering . 144

7.3.2 Classification . 145

7.3.3 Level-of-Detail . 146

8 Summary and Future Work 147

8.1 Summary . 147

8.2 Future Work . 149

List of Figures 154

List of Examples 159

Bibliography 160

xiv

Contents 1

1

2 Contents

2

Chapter 1

Introduction

Computers play an important role in today’s society. They have proven to
be very versatile and are used for many different applications. The main
quality that makes computers so multitalented is the incredible speed which
can be used to process the data. But this all would be useless, if one would
not be able to look at the data. A computer can really only add numbers
and works with binary data which is very unusual for humans to look at.
Visualization and scientific visualization in particular deals with the trans-
lation of this binary information into a graphical representation. Vision is
our strongest sense and helps us to orient ourselves. Visualization can be
basically divided into two groups, information visualization and scientific
visualization. While the border between is very blurred, information visual-
ization deals with abstract n-dimensional data sets while scientific data sets
are usually 3- or 4-dimensional and have a spatial reference. One every day
example is the visualization of the file structure on the various hard drives
in a computer. The general focus in visualization is the extraction and dis-
play of features from a given data set. Figure 1.1 shows two examples from
information and scientific visualization. The left one shows a file browser
under Linux, while the right one displays the flow of air into an aircraft
engine [Gro].
The huge processing power of high performance computers can be used to
simulate complicated processes using mathematical approximations. These
simulations can help to reduce the number of expensive constructions and
experiments to a minimum. They are also very attractive and invite users
to change some parameters which would not be possible in practice. These
simulations can be used to increase the efficiency and to save time and re-
sources. The difficult part with these simulations is the visualization of the
experimental results. Here computer graphics can be used as a tool to dis-
play complicated information.
The focus for this thesis is the visualization of fuel cell simulations. The
two most challenging attributes of these data sets are their size and multi-

3

4 Chapter 1. Introduction

parametric nature. Currently, the technology and algorithms used are not
fast enough to produce the final simulations, but the realistic dimensions of
the data set will be around 250× 250× 1000× t. Additionally for all sam-
pling points, five scalar values and one vector value exist which represent
attributes like the concentration of oxygen or hydrogen and flow information.
Chapter 2 has a more detailed introduction on the data sets and to fuel cell
technology. In the following two sections the research goal and the layout

Figure 1.1: Examples for information a), and scientific
visualization b)

of the thesis are described in more detail. The next section represents the
intention of the research and describes what qualities could be used for an
efficient and expressive visualization of fuel cell simulations. The following
section describes the structure and the organization of this work.

1.1 Intentions

The current visualization of the fuel cell data is a slice extraction of one
of the six data sets and a display using contour lines. This slice extraction
can only be performed along the z-axis. The goal of the research and this
thesis is the improvement of this simple visualization and to search for more
appropriate display techniques.
Because of the nature of the fuel cell data set, the research goal can be
divided into two parts. The first one is the development of fast visualization
techniques for huge time-varying volumetric data sets. Here the current
available volume rendering techniques have to be surveyed and evaluated
for their applicability. Also compression techniques might be useful in order
to reduce the amount of data. To eventually create a tool which can be
used with other data sets as well, the used compression techniques must
be able to compress the data set without any loss of information. This is

4

1.2. Structure 5

very important for medical data where physicians need uncompressed images
without artifacts. The focus for this task is on fast visualization with good
image quality.
Additionally, multiparameter visualization techniques have to be evaluated
for their usefulness for the fuel cell data set. Possibly not all data sets have
to be diplayed at the same time. Maybe a few are characteristic enough
to display most of the contained information. Here the focus is on the
development of a simple tool which can be easily used to display the fuel
cell data using common visualization techniques. Further research has to
be performed to find more appropriate visualization techniques which can
adequately represent the contained information.

1.2 Structure

This thesis is organized in eight chapters. The first Chapter, this one, gives
an introduction into the topic and explains the research goal and lays out
the outline of the thesis.
In the second Chapter some sample data sets are discussed. The interesting
part here is where these data sets originate, what they contain and what the
goal for the visualization is. In contrast to all data sets which are described
in Chapter 2, the fuel cell simulation data sets are the main application for
this thesis and are discussed in more detail. Some information about the
functionality of a fuel cell will be presented as well.
Chapter 3 is the theoretical introduction into the topic. Here some basic
ideas of volume rendering, signal- and wavelet theory are explained which
are required later in Chapters 4 and 5. This Chapter is also used to com-
pare some existing techniques in volume rendering and to evaluate these
with regard to their applicability to the visualization of fuel cell simulations.
The second part of Chapter 3 is used to introduce signal theory and wavelet
compression, which are both needed for the later developed technique for
fast volume visualization.
Chapter 4 describes a method which was implemented by using some com-
pression ideas from Chapter 3. The main principle of this algorithm is to
use a more efficient lattice to store the data and some lossless/lossy com-
pression techniques to further shrink the size of the data set. For the final
visualization of the data set common graphics hardware of current PCs is
used to render huge data sets at interactive rates. Here, Chapter 4 explains
the algorithm in more detail and gives also some references to previous and
related work. In the beginning of Chapter 4 more efficient grids are intro-
duced for static and time-varying data sets which allows to store the same
amount of information with fewer samples. In the following sections some
pre-segmentation and compression techniques are discussed which addition-
ally help to reduce the data size. In the end, some visualization techniques

5

6 Chapter 1. Introduction

are presented for volume rendering using current texture mapping hardware.
Chapter 5 in contrast deals with the multiparametric nature of the fuel cell
data sets. Here some techniques are described in theory and some selected
methods have been implemented. The focus here is to create meaningful vi-
sualizations which help in the process of gathering information. Some of the
presented techniques are well known and some are new. Chapter 5 presents
a wide variety of possible techniques for multiparameter visualization. All
discussed methods are compared with respect to their applicability for visu-
alizing the fuel cell data set. Even though this data set is of main interest
for Chapters 4 and 5, all described methods and techniques can be used with
other data sets as well.
Achieved results are presented in Chapter 6. This Chapter is divided into
three parts, where the first two sections present qualitative and quantitative
results from Chapter 4 and the last section describes the achieved results
from Chapter5. Finally some conclusions are drawn about the usefulness of
the developed ideas.
Chapter 7 presents some screenshots and describes some more details about
the actual implementation. Here also some code examples for important
parts of the program are shown and explained.
The last Chapter summarizes the work and compares the achieved results
with other existing techniques. In the end of Chapter 8 some ideas are
presented for future improvement and development.

6

Chapter 2

Applications

Even though the main application for this thesis is the fuel cell data set,
which will be discussed in more detail in Section 2.2.1, efficient and fast
visualization is necessary for the display of all data sets. The goal of this
Chapter is to motivate the need for good visualization by presenting sam-
ple data sets which are used in this thesis. Most of the data sets discussed
here originate either from volvis.org [Mei00] or from the National Library
of Medicine [Set].
Usually data sets are sampled on a regular grid. These are the only data
sets which are considered in this thesis. Some very large data sets are sam-
pled on irregular grids where a grid definition is needed in order to visualize
the contained information. Because the rendering of these data sets is more
complicated and computationally expensive, the current implementation fo-
cuses on regular data sets only.
In the first section of this Chapter some medical data sets are discussed
while the following section focuses more on general scientific data sets. Also
in Section 2.2.1 a detailed introduction to the fuel cell simulation data is
given with background information of how fuel cells actually work.

2.1 Medical Data

In medical imaging, visualization is needed on a daily basis to diagnose pa-
tients and to treat illnesses. Since the discovery of the X-Rays in 1895 by
Wilhelm Conrad Röntgen, medical science has developed several very effi-
cient imaging techniques. These techniques have evolved in the last decades
and are able to scan down to fractions of a millimetre. The data sets which
are generated using these imaging techniques need to be reconstructed first.
Depending on the imaging technique used, the format of the data can range
from 8 bit up to 32 bit. Most of these medical imaging techniques are

7

8 Chapter 2. Applications

also capable of creating 3- or 4-dimensional volumetric data sets. The most
commonly used ones are:

• computed tomography (CT),

• magnetic resonance imaging (MRI),

• positron emission tomography (PET),

• single photon emission computed tomography (SPECT), and

• Ultrasound (US).

While CT and MRI are used to capture anatomical information, PET and
SPECT are utilized for functional imaging. Also MRI can be used for func-
tional imaging by measuring the differences in the oxygen concentration in
particular tissues. All these techniques can also be abused to create other
scientific data sets, as can be seen in the next section.
The medical sample data sets used for the visualization and compression for
the work in this thesis are:

• visible human male (MRI) (256× 256× 512)

• visible human male (CT) (512× 512× 1877)

• visible human male (Photographs) (2048× 1216× 1877)

• dynamic kidney study (dSPECT) (90× 90× 80× 64)

• mouse embryo (Ultrasound) (256× 256× 256)

• unc brain (MRI) (256× 256× 145)

• head (MRI) (128× 128× 128)

• aneurism (MRI) (256× 256× 256)

The visible human data sets are created and sponsored by the National
Library of Medicine [Set] for scientific research. Three different modalities
are available, but have to be preprocessed prior the rendering.
The dynamic SPECT study shows the reconstruction of a human kidney
which was imaged using the SPECT technique. This data was reconstructed
differently to reveal the temporal behaviour of the kidney function. In this
time-varying data set one can observe the washout of the radioactive tracers
in the kidney.
Additionally, three other data sets have been used. One is a 3D ultrasound
volume of a mouse embryo and the other two are MRI scans of the brain
and the head of a human male.

2.2 Scientific Data

Besides the medical data sets from the previous section, also other scientific
data sets were used which shall be discussed in this Section. Some of these
data sets are created using simulations or are created synthetically by eval-

8

2.2. Scientific Data 9

uating mathematical equations, but most are scanned using either CT or
MRI imaging. Most of these data set are already resampled to 8 bit. The
data sets are:

• Vienna Christmas tree (CT) (512× 512× 999)

• Marchner Lobb (various sizes)

• frog (MRI) (500× 470× 138)

• engine (CT) (256× 256× 128)

• lobster (MRI) (301× 324× 56)

• nucleon (41× 41× 41)

• statue leg (CT) (341× 341× 90)

• tomato (MRI)(256× 256× 64)

• bonsai tree (CT) (256× 256× 256)

• skull (CT) (256× 256× 256)

The first one is a Christmas tree which was created by the computer graphics
department of the Technical University of Vienna and used in various styles
on a Christmas card [TUW]. The tree was scanned using a CT scanner and
exist in three different resolutions. The Marschner-Lobb data set [ML94]
was created to evaluate the quality of different interpolation filters. A time-
varying version of the original function was implemented and is used as a test
data set throughout the thesis. The remaining data sets are from volvis.org
[Mei00] and represent several commonly used data sets in volume rendering.
These data sets are either simulations, or are acquired using CT or MRI.

2.2.1 Fuel Cells

This section is used to discuss the fuel cell simulations and the actual fuel
cell in more detail. Here, first a theoretical introduction about the working
principle is given, followed by an analysis of the simulation data.
A picture of a fuel cell can be seen in Figure 2.1, which shows a transportable
fuel cell from Ballard Power Systems [Sys01]. A fuel cell is an electrochemi-

Figure 2.1: Transportable fuel cell

cal energy conversion device which converts hydrogen and oxygen into water,

9

10 Chapter 2. Applications

heat and electricity. The proton exchange membrane fuel cell (PEMFC) uses
one of the simplest reactions of any fuel cell. Figure 2.2 shows the principle
of such a fuel cell. On the anode, hydrogen is dispersed into the fuel cell
and the hydrogen molecules release electrons. On the cathode side, oxy-
gen is lead into the fuel cell and electrons are conducted from the external
circuit to the catalyst. Here hydrogen and oxygen are combined to water.
The electrolyte is the proton exchange membrane. This membrane conducts
positive ions, but blocks electrons. The catalyst supports the reaction and

Figure 2.2: Principle of a PEM fuel cell

is built of a thin coat of platinum. The actual chemical reaction can be seen
in Equation 2.1. Hydrogen is split on contact with the catalyst into H+ ions
and electrons. The electrons are conducted through the anode where they
can be used to power electrical devices, such as a computer.

Anode 2H2 = 4H+ + 4e−

Cathode O2 + 4H+ + 4e− = 2H2O
NetReaction 2H2 +O2 = 2H2O

(2.1)

The reaction of a single fuel cell produces about 0.7 volts. Many fuel cells
are combined in order to get the voltage to a higher level. The advantage of
PEM fuel cells is that they operate on low temperature, which makes them
usable for a lot of applications. Fuel cells can be used to power cars and
busses which would pollute the air only with water. They can also be used
for transportable devices, as can be seen in Figure 2.1.
The fuel cell simulation data set which is used in parts of this thesis is a
simulation of such a PEM fuel cell. The actual data set represents only a
small part of a real fuel cell. These simulations are used to perform research

10

2.2. Scientific Data 11

about the efficiency of fuel cells and to find weaknesses in current designs.
The fuel cell simulation data consists of the following parameters:

• concentration of oxygen O2,

• concentration of hydrogen H2,

• pressure p,

• temperature T ,

• velocity (vx, vy, vz), and

• concentration of water H2O.

The actual size of a simulation of these data sets is around (250×250×1000×
t). However, the computation of these simulations is very difficult and time
consuming. For the research in this thesis, only a small representation of
the actual data set could be used. The size is (11× 13× 101).

11

12 Chapter 2. Applications

12

Chapter 3

Fundamentals

I would like to use this section to discuss some pre-requisites and to explain
basic and fundamental principles related to the topic of the thesis. This
chapter is not intended to present previous and related work only, as this
will be discussed throughout the thesis. Whenever applicable and known,
references to previous or similar work are given.
The motivation behind this chapter is to explain some required ideas and to
develop an understanding of how the different topics which are covered by
the thesis are linked together by this work.
The main focus in this thesis is on possible techniques for the visualization
of huge data sets. The fuel cell data, which was discussed in the previous
chapter, is used as an application and example for these methods. What
makes this data challenging is that it is a huge and multiparameter data set.
Hence techniques have to be explored for fast visualization of volumetric
data sets, as well as methods for multiparametric display. Here Chapter 4
explains techniques for fast visualization of huge volumetric data sets, de-
velops a new algorithm, and shows how existing methods can be improved
in rendering speed and less memory consumption. Chapter 5 is dedicated to
the multiparametric nature of the fuel cell data and shows existing as well
as new or not yet explored methods to display more than one data set at
once using these methods.
The next sections in this chapter discuss fundamental principles which are
needed for the first part of the thesis. In the first section volume render-
ing is introduced and different rendering methods are compared based on
rendering speed and accuracy. Here one can find a general overview of vi-
sualization techniques available for volumetric data sets. The focus here is
slightly set to direct volume visualization using texture mapping hardware,
but this will be discussed in more detail as part of Chapter 4.
The second part pays attention to compression techniques and in particular
to wavelets. There is also a very short introduction to signal processing
which is of huge interest for both, wavelets as well as for lattice theory.

13

14 Chapter 3. Fundamentals

Wavelets can be used to compress volumetric data sets to make them more
manageable for interactive visualizations. In these sections one can find the
required math as well as explanations for the basic principles of wavelet and
wavelet theory with the focus set to image compression. The sections on
signal processing and wavelet theory will be helpful to understand Chap-
ter 4 where a different lattice is introduced to sample the data more effi-
ciently. Also some more advanced rendering techniques for volume data sets
are shown and explained. This requires knowledge of the actual rendering
pipeline.
For the discussed rendering techniques the three most important qualities are
the possible rendering speed, the image quality and the memory consump-
tion of the algorithm. Also some techniques might require special hardware
to run which would be a drawback. The speed issue is very important to
render huge data sets interactively. For this reason, speed will be the main
focus for the thesis. Nevertheless, image quality is important too, but it
would be nice to have a method which allows to gradually switch between
different Levels-of-Detail.
For the compression not only the final compression ratio is of interest. Also
and especially for medical data the resulting artifacts and the image quality
are of interest too. Some of the data will be decompressed on the fly, e.g.
for time varying data sets, the decompression has to be fast too in order to
achieve interactive update rates.
In the end of this chapter a short summary is given which compares the
discussed techniques with one another. Also some conclusions are drawn
about which methods or algorithms would fit best in the implementation of
a fast volume visualization tool for huge data sets.

3.1 Volume Visualization

Volumetric data sets are common in many scientific applications and engi-
neering. For instance, many medical imaging methods, like CT, MRI, or
SPECT/PET, can produce three- or four-dimensional data sets. These data
sets are usually reconstructed on a slice by slice basis. A common method
to visualize this data is to simply display it also on a slice by slice basis. A
more intuitive way is to display the whole 3D data set at once to effectively
convey information within the volumetric data set. The idea of volume ren-
dering is to put all slices from one volume on top of each other which results
in a 3D image stack with the dimensions of the volume. Pixels in 3D are
called voxels and they have a spatial influence in all three directions. This
volume can now be rendered using different rendering techniques which shall
be explained shortly in a little more detail.
Other applications for volume rendering include numerical simulations like
the fuel cell data where physical properties like temperature, concentration

14

3.1. Volume Visualization 15

or pressure are modelled. Using volume rendering one can easily gain an
overview of the entire data set which allows one to more quickly conclude
about the efficiency of the simulated fuel cell design. If there are inconsisten-
cies somewhere in the model, they can be easily found in the visualization
with the proper transfer function.
Other areas where huge volumetric data sets need to be visualized are ge-
ological data sets for oil or resource exploration. Here one is interested in
finding particular densities or structures which again can be easily discov-
ered when one is able to look within. These structures can then be displayed
and analyzed using volume rendering.
This section is divided into several parts, each of them explaining a differ-
ent method of volume rendering. The first section deals with classification
techniques which are very important to highlight specific regions in the data
and to mask out uninteresting background information. The section after
is not really a part of volume rendering, but shows how to work with volu-
metric data sets in 2D and how to interpolate oblique slices. The third part
shows how to extract contour information for display and the last section
finally explains the most commonly used techniques for direct, fuzzy volume
rendering.

3.1.1 Classification

Classification is very important for every type of volume rendering and is a
critical step in producing meaningful volume rendered images. Most data
sets simply represent density information which needs to be interpreted in
order to produce expressive images which shall aid in the understanding of
the data. The information how to classify the different densities or portions
of the volume is used to determine their contribution to the final image.
Using these usually pre-defined object material properties in a proper way

Figure 3.1: Transfer functions

one can easily distinguish between these different objects inside a volume.
A big influence has the chosen ray function which shall be discussed later

15

16 Chapter 3. Fundamentals

in this section. In short, classification and therewith transfer functions are
responsible for mapping the information a voxel represents into different
values, such as material, colour and transparency.
Figure 3.1 shows two simple transfer functions on how to classify different
densities in a CT data set. The first transfer function simply uses a pre-
defined threshold and assigns everything below the threshold as air and
everything above as bone. A better solution is shown on the right side of
the image where another type of tissue (muscle) is introduced and where the
transition from one tissue to another is smoother.
The most commonly used transfer functions in volume rendering are for
colour and opacity mapping.

Colour

Colour is very important in order to get significant answers from volume
rendered data sets. Without colour, it could be hard to look at and inter-
pret these artificial images. For the CT example in Figure 3.1, it would
be difficult to distinguish between the different kinds of tissue just by their
opacity value, but with a proper colour table assigned to the volume it is
easy to differentiate bone from soft tissue and air. Colour transfer functions

Figure 3.2: The dynamic heart phantom volume
rendered without(a) and with an applied colour table(b)

can be defined by using three independent transfer functions which map
scalar values into red, green, and blue. Often these three components are
pre-processed into one colour lookup table, which specifies the colour for a
given gray tone. Care must be taken by the definition of the colour table to
avoid hard edges within one class of the volumetric data set. These edges
can produce unintended visual artifacts in the rendered image which eventu-
ally lead into misinterpretations. Figure 3.2 shows an example of a volume
rendered phantom with and without a colour transfer function applied to it.
Recent research has shown that there are better solutions than just using

16

3.1. Volume Visualization 17

the RGB space for colour mapping. Interactive spectral volumetric render-
ing techniques [BMDF02] can be applied to reveal the inside of a volume
in a way which would not be possible using standard colour mapping tech-
niques. Instead of using three colour components, spectral rendering deals
with up to 31 different components. These techniques can be used to visual-
ize tomatoes, bonsai trees and engines in a completely new way [fSSSFU02].
Figure 3.3 shows two images from a frog data set. The image only needs to
be rendered once, the light sources can be changed in real-time without the
need of rerendering the entire scene.

Figure 3.3: Spectral volume rendering with two
different light sources

Opacity

Opacity, or better translucency, is used to make the volume transparent
such that one can look inside. Without opacity transfer functions a volume
rendered image would simply look like an opaque rendered block with texture
applied to its sides, or in other words useless. But the fact of being able to
look within and change the opacity for each voxel makes volume rendering
so powerful and a favoured visualization technique. An example for different
opacity transfer functions applied to the same volume can be seen in Figure
3.4.
Opacity transfer functions can also be used to make a pre-selection of the
volume-of-interest. In the CT example one can, for instance, apply a transfer
function which blends off everything except bone structures. As the result
only what is classified as bone would be visible in the final image. Other
tissues are simply transparent and are not visible. Classifying a volume
based on scalar values alone is often not capable of completely isolating
an object of interest. A technique introduced by Levoy [Lev88] adds the
gradient magnitude to the specification of a transfer function. Using this
technique an object in the volume is specified by a combination of scalar
value and gradient magnitude. This is useful to avoid the selection and

17

18 Chapter 3. Fundamentals

Figure 3.4: The dynamic heart phantom volume
rendered with two different opacity tables

eventually enhanced rendering of uninteresting homogeneous regions within
a volume and highlighting only regions that change a lot. In a certain
way this rendering scheme enhances what the human vision system is most
sensitive for: edges.
Figure 3.5 shows a CT scanned foot rendered with this technique. The sharp
changes from air to soft tissue and from soft tissue to bone are clearly visible,
but the homogeneous regions inside are almost transparent.

Figure 3.5: Volume rendered foot with gradient
magnitude transfer function

3.1.2 Volume Slicing

The classic approach to display volumetric data sets is to simply visualize
them in 2D slice by slice. This is also the natural way for most of the data
sets, because they are often reconstructed from tomographic measurements

18

3.1. Volume Visualization 19

in a slice by slice manner. To view the data on a slicing basis is still very
common in medical imaging. This can be done with either orthogonal slices
which are parallel to a coordinate planes or by using oblique slices. Most
physicians are trained to look and interpret such slices for decades. Hence
they are very familiar with them and often prefer this viewing scheme in-
stead of 3D volumetric methods. Another reason is that volume rendering
still requires a lot of hardware resources to generate pretty images at inter-
active rates.
Figure 3.6 shows a screenshot from a typical medical visualization program
displaying the volume data set, in this case from a dSPECT study, using
orthogonal volumetric slicing [RMC+00]. Care must be taken when in-

Figure 3.6: Slicing of volume data sets in
medical imaging

terpolating oblique slices to not introduce artifacts in the extracted images
which also could result in misinterpretations. While direct volume render-
ing is capable of generating nice looking images with a great context, it is
sometimes more efficient to quickly browse through the 2D slices to find the
information needed. Depending on the field of application either of these
methods might be desirable.

3.1.3 Contouring

Contouring can be thought of as an extension to colour mapping. When
we see a surface coloured with data values, the eye often separates similarly

19

20 Chapter 3. Fundamentals

coloured areas into distinct regions. When we contour data, we are effec-
tively constructing the boundary between these regions. These boundaries
correspond to contour surfaces of constant scalar value, also called an iso-
surface. Examples of iso-surfaces include constant medical image intensity
corresponding to body tissues such as skin or bone. The Marching Cubes al-

Figure 3.7: The dynamic heart phantom
rendered as iso-surface from gray level 25

gorithm by Lorensen et.al. [LC87] is often used to compute such iso-surfaces.
It is based on a divide-and-conquer technique which treats each cell indepen-
dently. The basic assumption is that a contour face can only pass through a
cell in a finite number of ways. A case table is constructed that enumerates
all possible topological states of a cells given combinations of scalar values at
that cell point. The number of topological states depends on the number of
cell vertices, usually eight for cubed voxels in standard cubic grid. A vertex
is considered inside a contour if it’s scalar value is larger then the threshold
which is used for the contour surface. Figure 3.7 shows an example where
the Marching-Cubes algorithm was used to contour the dynamic phantom
data set.

3.1.4 Direct Volume Rendering

Direct volume rendering is the technique which is most often thought as
being just volume rendering. Here an image is generated by using the whole
or parts of the volumetric data set. Different methods have been developed,
where each of them has their own advantages and disadvantages in terms
of speed and accuracy. The most common techniques are ray-casting, shear
warp, splatting, Fourier domain volume rendering, volume rendering using
special hardware and volume rendering using texture mapping hardware.
These techniques can be basically divided into image-order and object-order
volume rendering.

20

3.1. Volume Visualization 21

In an image-order method, rays are cast for each pixel in the image plane
through the volume to compute the pixel values, while in an object-order
method the volume is traversed, typically in a front-to-back or back-to-front
order, with each voxel processed to determine its contribution to the final
image.
Volume rendering uses different ray functions to determine the contribution
of each voxel to the final image. For example, maximum intensity projection
looks for the brightest voxel along the ray and only this one will contribute
to the final pixel colour. Another ray function uses a compositing method
called alpha blending to determine the pixel colour. It traverses through
the volume and adds the contribution of each passed voxel to compute the
colour of the pixel. Figure 3.8 shows a volume which was rendered using
alpha blending (a) and the maximum intensity projection(b).
Classification must be performed to assign colour and opacity qualities to re-
gions within the volume. Volumetric models can also be defined to support
shading which enhances the 3-dimensionality of the data set. Raycasting

Figure 3.8: The dynamic heart phantom
volume rendered with alpha blending(a) and the

maximum intensity projection(b)

[Lev88] is the classic volume rendering technique and performed in software.
Here rays are cast from a viewpoint through the volume to determine the
contribution of each voxel to the final image. Different ray functions can be
used in order to enhance certain parts of the volume. The simplest one is
alpha blending which generates semi-transparent volumes. The maximum
intensity projection only evaluates the brightest voxel, while x-ray images
are produced by building the average of all voxel which where visited. Im-
provements to the rendering speed can be made by early ray termination
where the ray is not further traced when a certain opacity, often a value
around 0.95 is reached. Ray casting generates very good looking and clear
images, but the software implementation is one of its biggest drawbacks. A
hardware implementation of this algorithm is available as PCI card for the

21

22 Chapter 3. Fundamentals

PC (VoluemPro) [PHK+99]. This card is available with up to 512 MB of
texture memory and allows fast rendering of volumes that fit into the avail-
able memory space.
The shear-warp algorithm [Lac95] is an extension and improvement to the
ray casting algorithm. Because it is difficult and computationally expensive
to trace a ray through a volume arbitrary this algorithm first shears the vol-
ume according to the current rotation, evaluates all rays in parallel in the
sheared volume and warps the final image in order to remove the distortions.
The overhead of shearing the volume and warping the images is smaller than
the gain in speed through evaluating the parallel rays. The resulting images
are a little bit blurred due to the additional warping operation.
Splatting [Wes90] is a fast volume rendering techniques where each voxel
is represented by a footprint which is then splatted onto the viewing plane.
The reconstruction kernel of all splats are computed in pre-processing which
saves time while rendering the images. Other optimizations are that only
those voxels are splatted which are above a given threshold. Other improve-
ments were made by using commonly available OpenGL graphics hardware
to splat the voxels more efficiently [KM01]. Images created using the splat-
ting algorithm usually look a bit blurred due to the splatting technique.
Figure 3.9 [MHB+00] shows some images which were generated using the
most often used volume rendering techniques. Even though it is a little
outdated and some techniques have improved a lot, it shows that some dif-
ferences are noticeable in the image quality. The fastest known volume ren-

Figure 3.9: Comparison of raycasting (a),
splatting(b), shear-warp(c) and texture

mapping(d)

dering technique is the Fourier domain volume rendering [TL93]. Here, the
entire volume is transformed into the frequency domain in a pre-processing
step. Using the Fourier projection slicing theorem [Lev92] allows to ex-
tract slices out of the 3D Fourier volume which are then re-transformed into
spatial domain to generate the output image. Because one only needs to
extract a 2D slice out of the 3D Fourier volume, this algorithm has a com-
plexity of O(N2log(N)) versus all other algorithms, which have a complexity
of O(N3). One drawback is that this algorithm only allows one to create
X-Ray looking images, but recent research shows that efficient shading is
possible using spherical harmonics [ESMM02]. Other improvements are

22

3.2. Signal Theory 23

depth cueing with aid in the lack of depth perception, but occlusion is still
a problem within Fourier based volume rendering.
The volume rendering technique which was used for the implementation of
this thesis is volume rendering using texture mapping hardware [CCF94].
Here either 2D textures and object-oriented slices or 3D textures and viewport-
aligned slices are used to resample the volume to evaluate the rendering in-
tegral. The volume data set is transferred to the available texture memory
and then used as texture with alpha-blending enabled. This texture can be
sliced either object-aligned(2D) or viewport-aligned(3D), depending on the
available hardware capabilities. Usually 3D textures give better results, but
some sampling artifacts still occur. Volume rendering using texture mapping
hardware is very fast and the image quality has improved enormously over
the last years. This is due to the availability on common consumer graphics
hardware since a few years. Chapter 4 has a more detailed discussion of this
technique and Chapter 7.3 shows additionally some implementation details.

3.2 Signal Theory

Everything related to imaging, image processing or sampling can be stud-
ied via signal processing. A signal is simply a function that carries some
information. This signal can be as simple as a 1-dimensional straight line
and as complex as a n-dimensional mathematical function. Usually a signal
changes over some set of spatiotemporal dimensions.
A simple 1-dimensional example of a signal is f(t) which represents a func-
tion that is changing over time. A real world example would be an audio
signal as a collection of various tones of different audible frequencies that
vary over time. Then the signal is the amplitude of each frequency at each
moment in time, or a time-varying signal.
Other signals can also vary over space like an image or video. Here, the
signal is simply f(x, y) and varying over the two spatial dimensions x and y.
For monochromatic images the signal represents the amount of light at the
position (x, y). RGB or RGBA images consist of three or four dependant
channels, each representing either the red, green, blue or the alpha signal.
For the application of 3D volume rendering we use 3- or 4-dimensional data
sets. In 3D, it is just the extension of the 2D image with an additional spatial
dimension f(x, y, z), and when also varying over time or another parameter
with one spatial and one temporal dimension f(x, y, z, t).
Signals can have very different quantities. Audio signals have an amplitude
at each time step, images or volumes have an intensity at each position.
Medical images can represent the attenuation of x-rays or the hydrogen
density. Other signals can be seen as vectors, like RGBA for the four differ-
ent channels in an RGBA image or volume.
Signals are most often continuous which have to be discretized and in order

23

24 Chapter 3. Fundamentals

to work with them digitally in a computer. Also the (natural-)continuous
signal range needs to be discretized because of the limited precision and
storage capacity of computers. All samples are stored with finite precision
from infinite precision in the continuous domain. The discrete representa-
tion of a continuous signal will generally introduce some artifacts, aliasing,
in to the data.
The accuracy of the digital representation depends on two qualities; sam-
pling frequency and the number of bits used for the quantization. The spac-
ing of discrete values from a continuous signal is called sampling a signal
at discrete locations. The sample frequency describes how often the signal
will be sampled and hence how well the sampled signal can approximate the
original, continuous version. The spacing of discrete values in the range of a
signal is called the quantization and describes how many different possible
values the sampled signal can represent. Even though, sampling and quan-
tization are independent from each other, both play a significant role in how
much the sampled signal deviates from the original continuous signal. The
quantization defines the precision of the sampled signal, while the sampling
frequency controls the temporal or spatial accuracy of the discrete signal.
The Nyquist-Shannon sampling theorem [Sha49], a fundamental theorem
of digital signal processing, states that a digital signal can not unambigu-
ously represent signal components with frequencies equal or above half the
sampling frequency. This frequency is called the Nyquist frequency. Fre-
quencies above the Nyquist frequency can be observed in the discretized
signal, but their frequency is ambiguous. That means, a frequency compo-
nent with frequency f cannot be distinguished from another component with
frequency 2f and other harmonic frequencies if f is larger than the Nyquist
frequency. To avoid this problem, most analog signals are low-pass filtered
by the Nyquist frequency before converting to the digital representation. If
the sampling frequency is less than this limit, then frequencies in the original
signal that are above half the sampling rate will be aliased and will appear
in the resulting signal as lower frequencies. Therefore, an analog low-pass
filter is typically applied before sampling to ensure that no components with
frequencies greater than half the sample frequency remain. This is called
anti-aliasing.
Signal processing and signal theory are very important for understanding
wavelets and lattices. Wavelets are discussed briefly later in this Chapter
while lattice theory, especially with focus on closest sphere packings, is dis-
cussed and explained in Chapter 4.1.

3.3 Compression

One challenging problem in computer science is the amount of data which
needs to be processed, analyzed and stored. Larger data sets require more

24

3.3. Compression 25

memory and processing power to analyze the data sets and to extract some
information. The visualization of huge data sets, which can be built by sim-
ulation or scanning with today’s technology, is still a difficult task.
To be able to handle huge data sets, which can exceed the scale of giga- or
terabytes, one needs solutions which allow one to store the data in a more
efficient way. This section explains some basic compression techniques for
the wavelet transform. Wavelets are a good tool for compression as they can
be used to locally decorrelate the signal into low and high frequencies bands
and this information can be further used to select the level of compression
and to encode this data in a better, more efficient way. Other advantages
are the good image quality and the high compression ratios which can be
achieved. Compression, and compression using wavelets in particular, work

Figure 3.10: Principle of wavelet compression

such that the signal is decomposed using the fast forward wavelet transform
into low and high frequencies. The high frequencies are the detail informa-
tion which is needed to reconstruct the original signal from the low pass
version. One quality of these detail coefficients is that they can be stored
more efficiently using a bitstream encoding techniques, like run length en-
coding. Figure 3.10 shows the principle of compression using wavelets. An
incoming signal is decomposed using the fast wavelet transform (FWT) and
the resulting detail information is quantized and encoded into a bitstream.
The step where the data is really compressed is called quantization. Using
some thresholds, one can define how many details are needed. Another very
helpful side effect from using wavelets is that while one transforms the data
set one is also building a multiresolution version of the data, which can be
exploited for Level-of-Detail rendering.
In the next section first the run length encoding scheme is introduced which
is used to encode the high frequencies. After this two wavelet decompo-
sition techniques are discussed. The classic approach on the example for
Haar wavelets and a newer algorithm, called Lifting Scheme which allows a
integer to integer wavelet decomposition.

25

26 Chapter 3. Fundamentals

3.3.1 RLEncoding

Run-Length-Encoding (RLE) is a simple and straightforward technique to
reduce the amount of memory it takes to store repeatative data. The basic
principle is that it uses stings to encode the runs of the same character. A
typical data string can be seen in Example 3.3.1:

abcddddddcbbbbabcdef

Example 3.1: Data sequence

The example shows a string of a length of 20 characters composed out of
a through f. Each character occupies one byte of memory which makes 20
bytes for the whole string. However, there are two parts in the string which
are build out of one character only, namely b and d. These runs can be
stored using two bytes only. The first indicates how many letters follow
and the second one shows which letter was used. The data sequence from
Example 3.3.1 can be stored using 14 bytes only as can be seen in Example
3.3.1:

abc6dc4babcdef

Example 3.2: RLEncoded sequence I

The example above is very simple and limited. It is not possible to encode
strings with numbers because one could never tell which number indicates a
run length and which is a literal. Another problem is that if one would en-
code using this scheme, also the runs of one would be encoded by two bytes.
This could easily lead to even bigger data sets not speaking of compression.
The difficulty is to tell when a run starts and when a literal sequence begins.
A common approach is to use only 7 out of 8 bits to indicate the run length.
If the length is positive then it shows that the following byte is repeated
that many times. If it is negative, then it indicates a literal sequence which
is as long as the negative number. The data sequence from Example 3.3.1
was encoded using this principle and is shown in Example 3.3.1. To store
this sequence 17 bytes are needed.

-3abc6d-1c4b6abcdef

Example 3.3: RLEncoded sequence II

In this example we saved only 3 bytes, but as the frequency and length of the
repeating characters increases the compression ratio gets better and better.
In the worst case, see the left image in Figure 3.11, RLE will not compress
the data, instead it will produce a bigger file. Every 127 bytes an additional
byte will be inserted to indicate a literal sequence.
In the best case, however, 128 bytes can be compressed to two bytes only,
resulting in a compression ratio of 64. An example can be seen in the right
image of Figure 3.11. For these reasons, RLE is most often used on grayscale

26

3.3. Compression 27

Figure 3.11: RLE Example

or black and white images where long runs are more likely than in high colour
images such as photographs where usually every pixel differs from the last
one.
The three images in Figure 3.11 demonstrate the extreme cases for the RLE
scheme. The size of all of these images is 100×100. The uncompressed image
is 10000 bytes. The left image shows the worst case scenario, where every
pixel differs from the one before. Here, every 127 bytes an additional byte is
inserted which results in a compressed size of 10100 bytes. The image in the
middle, however, shows a better compression result. It has long runs and
can be compressed to 5317 bytes. The last image shows the best case where
128 bytes can be compressed to two only. This results in a compression ratio
of 64 : 1 and the whole image needs only 200 bytes to store now.
To avoid the worst case scenario, the algorithm could run in the horizontal
and vertical direction first and then the decides which results in the best
compression result. The additional information of which compression was
used could be stored in a one bit header, two bit for volumes.

3.3.2 Wavelets

Wavelets are a mathematical tool to hierarchically decompose signals and
functions. Using wavelets allows one to describe a function in terms of a
coarse resolution, plus detail information ranging from broad to narrow.
Wavelets can be applied to images, curves [FS94] or surfaces [GC95] offer-
ing an elegant technique for representing the levels of detail as needed.
Wavelets have their roots in approximation theory and signal processing
[Dau88], but they have been also applied to many problems in computer
science. Applications in computer graphics include image editing [BBS94],
image compression [DJL92], and image querying [JFS95].
The next section starts with the simplest form of wavelets, the Haar ba-
sis. The following sections are used to explain the one-dimensional wavelet
transform and basis functions for the 1D Haar wavelet and how it can be
used to compress discrete 1-dimensional functions. After this, a more gener-
alized case is discussed and it is shown how the algorithm can be extended
to work with n-dimensional functions.

27

28 Chapter 3. Fundamentals

1D Haar Wavelet

The Haar basis is the simplest wavelet basis and a good choice for an in-
troduction in wavelet theory. In this section it is first shown how a discrete
function can be decomposed using simple Haar wavelets. Later this decom-
position will be described using the proper basis functions for this wavelet
type. In the end of this section it will be shown how this can be further
utilized for a straightforward compression technique.
To demonstrate the wavelet decomposition and reconstruction, an accom-
panying example will be used throughout this section. Example 3.3.2 shows
a typical 1-dimensional function with four pixel values:

[1, 7, 4, 0]

Example 3.4: 1D image

This simple “image” can be represented in the Haar basis by computing the
wavelet transform. All pixels will be averaged pairwise to yield the next
lower resolution image. The missing information can be stored as detail co-
efficients which are used later to restore the original image. Lossless wavelet
compression is only possible when using the integer wavelet transform. Even
if one would keep all the detail coefficients it would not be possible to have
a really lossless compression because of the limited precision of computers.
Example 3.3.2 shows the complete decomposition of Example 3.3.2.

Resolution Averages Detail

1 [1, 7, 4, 0]
2 [4, 2] [−3, 2]
3 [3] [1]

Example 3.5: Wavelet decomposition

The complete wavelet transform for the 1-dimensional Haar basis of Example
3.4 is:

[3 1 − 3 2]

Example 3.6: Wavelet transform

To recursively restore the original image one would start with the lowest
resolution level and compute: [3 + 1, 3 − 1] which yield the next higher
resolution [4, 2].
To retrieve the original image and to compute the highest resolution one
would also include the next higher detail coefficients and compute: [4 +
(−3), 4 − (−3), 2 + 2, 2 − 2]. And finally one would have recovered the
original image.
The way the wavelet transform was computed, by recursively averaging and
differencing detail coefficients, is called a filter bank. A filter bank is a set

28

3.3. Compression 29

of analysis and synthesis filters to decorrelate and reconstruct the signal. If
the filter bank is appropriate, one can recurse and built a multiresolution
pyramid. No information has been gained or lost in this process. The origi-
nal image had four coefficients, and so does the transform. Also, given the
transform, one can reconstruct the image to any resolution by recursively
adding and subtracting the detail coefficients from the next lower resolution.
Storing the image as wavelet transform, rather than the image itself, has a
number of advantages. For instance, a lot of detail coefficients are usually
close to zero. Truncating these details introduces only small errors in the
reconstructed image, depending on the used threshold. This results in lossy
image compression, which is one of the major applications for wavelets.
Compression using wavelets usually results in better image quality and
compression ratios than standard JPEG which operates on a local basis.
Whereas the compression using wavelets works global where a given thresh-
old is used to truncate detail information from all points. One drawback is
that everything remains in the floating point domain if one is not willing
to introduce artifacts due to rounding. Smooth wavelets avoid the jagged
artifacts common in DCT JPEG.

Basis Functions In the last section the principles and the idea behind
wavelets where explained using a simple discrete function. This section is
used to describe the theory and the mathematics behind wavelet theory. In-
stead of thinking of images one can also visualize them as piecewise-constant
functions on the half-open interval [0, 1). A simple one-pixel image can be
seen as a function which is constant over the entire interval [0, 1). Here
V 0 is defined as the vector space for all these functions. A two-pixel image
has two constant pieces over the two intervals ranging from [0, 1

2) and [12 , 1).
The vector space containing these two functions is called V 1. If one would
continue using this scheme, the space V j will include all piecewise-constant
functions defined on the interval [0, 1) with constant pieces over each of the
2j equal subintervals.
Every one-dimensional image with 2j pixels can be seen as an element, or
vector, in V j . Because all functions are defined over the unit interval, every
vector in V j is also contained in V j+1. This can easily be seen if one would
describe a piecewise-constant function with two intervals as a piecewise-
constant function with four intervals. Now each interval in the first function
corresponds to a pair of intervals in the second function. The vector spaces
V j are nested, that means,

V 0 ⊂ V 1 ⊂ V 2 ⊂ ... ⊂ V j . (3.1)

The mathematical theory of multiresolution analysis requires this nested set
of spaces V j . What remains is to define a basis for each vector space V j .
The basis functions for the spaces V j are called scaling functions, and are

29

30 Chapter 3. Fundamentals

denoted by the symbol φ. A simple basis for V j is given by the set of scaled
and translated box functions (Haar basis):

φj
i (x) := φ(2jx− i), i = 0, ..., 2j − 1, (3.2)

where

φ(x) :=
{

1 for 0 ≤ x < 1
0 otherwise.

Now an inner product has to be defined for the vector spaces V j . The
standard inner product,

〈f | g〉 :=
∫ 1

0
f(x)g(x)dx, (3.3)

for the two elements f, g ∈ V j would serve well for the decomposition of
Example 3.3.2. Now a new vector space W j can be defined as the orthogonal
complement of V j in V j+1. Here, W j will be the space of all functions in
V j+1 that are orthogonal to all functions in V j under the chosen inner
product defined by Equation 3.3. Informally, one can think of the wavelets
in W j as a means for representing the parts of a function in V j+1 that
cannot be represented in V j . A collection of linearly independent functions
ψj

i (x) that are spanning W j are called wavelets. These basis functions have
two important properties:

1. The basis functions ψj
i of W j , together with the basis functions φj

i of
V j , form a basis for V j+1.

2. Every basis function ψj
i of W j is orthogonal to every basis function φj

i

of V j under the chosen inner product.

The detail coefficients which were introduced earlier are in fact coefficients
of the wavelet basis functions. The wavelets corresponding to the box basis
are known as the Haar wavelets, which are given by:

ψj
i (x) := ψ(2jx− i), i = 0, ..., jj − 1, (3.4)

where

ψ(x) :=

1 for 0 ≤ x < 1

2
−1 for 1

2 ≤ x < 1
0 otherwise.

Now these ideas can be applied to the “image” from Example 3.3.2. The
original image I(x) can be expressed as a linear combination of the box
functions in V 2:

I(x) = c20φ
2
0(x) + c21φ

2
1(x) + c22φ

2
2(x) + c23φ

2
3(x). (3.5)

The coefficients c20, ..., c
2
3 are simply the four original pixel values [1 7 4 0]. In

terms of basis functions in V 1 and W 1, I(x) can be rewritten using pairwise
averaging and differencing:

I(x) = c10φ
1
0(x) + c11φ

1
1(x) + d1

0ψ
1
0(x) + d1

1ψ
1
1(x). (3.6)

30

3.3. Compression 31

And finally, I(x) can be expressed as a sum of basis functions in V 0, W 0,
and W 1:

I(x) = c00φ
0
0(x) + d0

dψ
0
0(x) + d1

0ψ
1
0(x) + d1

1ψ
1
1(x). (3.7)

The four coefficients of Equation 3.7 are the Haar wavelet transform of the
original image in Example 3.3.2 for the basis V 2.
The Haar basis possesses an important property known as orthogonality,
which is not always shared by other wavelet bases. An orthogonal basis
is one in which all of the basis functions are orthogonal to one another.
Orthogonal filters are good since the reconstruction filters can be obtained
easily by transposing the decomposition matrix. This is explained later in
this section. Besides all the advantages of separable filters, they tend to
have a favoured direction which can also be seen in the low pass versions of
the signal. The solution are non-separable filters which are more difficult to
find and to apply.
Another important quality is the normalization step. A basis function u(x)
is normalized if 〈u | u〉 = 1 is true. The Haar basis can be normalized by
replacing the earlier definitions of φj

i (x) and ψj
i (x) with:

φj
i (x) := 2

j
2φ(2jx− i) (3.8)

ψj
i (x) := 2

j
2ψ(2jx− i); (3.9)

where the constant factor of 2
j
2 is chosen to satisfy 〈u | u〉 = 1 for the

standard inner product. With these modified definitions, the new normalized
coefficients are obtained by multiplying each old coefficient with superscript
j by 2

−j
2 .

For the Example 3.3.2, the unnormalized coefficients [1 7 4 0] become the
normalized coefficients [1 7 4√

2
0].

Compression The idea of compression is to replace an initial data set
f(x) using some techniques or algorithms with a smaller one, e.g. f̃(x). In
general, there are two different forms of compression, without any loss of
information and lossy compression. A function f(x) can be expressed as a
weighted sum of basis functions u1(x), ..., um(x):

f(x) =
m∑

i=1

ciui(x). (3.10)

The data set in this case consists of the coefficients c1, ..., cm. In terms of
compression, one would like to find another function which approximates
f(x), but which uses fewer samples than f(x). With a pre-defined error

31

32 Chapter 3. Fundamentals

tolerance ε (lossless compression ε = 0) the approximating function can be
described as:

f̃(x) =
m̃∑

i=1

c̃iũi(x). (3.11)

with m̃ < m and ‖f(x) − f̃(x)‖ ≤ ε. In general one would attempt to
construct a set of basis functions ũ1, ..., ũm that would provide a good ap-
proximation of f(x) with simply fewer coefficients.
One problem is the ordering of the coefficients c1, ..., cm which has to be done
in a way that for every m̃ < m, the first m̃ elements of the sequence give the
best approximation of f̃(x) to f(x) by using the L2 norm. The solution is
easy if the used basis is orthonormal as it is for the normalized Haar basis.
Let σ be a permutation of 1, ...,m, and let f̃(x) be a function which uses
the coefficients corresponding to the first m̃ numbers of the permutation σ:

f̃(x) =
m̃∑

i=1

cσ(i)uσ(i). (3.12)

Then the square of the L2 error in this approximation is:∥∥∥f(x)− f̃(x)
∥∥∥2

2
= 〈 f(x)− f̃(x) | f(x)− f̃(x) 〉

=
〈 ∑m

i=m̃+1 cσ(i)uσ(i)

∣∣∣ ∑m
j=m̃+1 cσ(j)uσ(j)

〉
=

∑m
i=m̃+1

∑m
j=m̃+1 cσ(i)cσ(j)〈uσ(i) | cσ(j) 〉

=
∑m

i=m̃+1(cσ(i))2

(3.13)

The error that is introduced is 〈ui | uj〉 = δij . If the basis is orthonormal
one can conclude that, in order to minimize the error for any given m̃, one
needs to find a σ that satisfies | cσ(1) |≥ ... ≥| cσ(m) |. The best choice
for σ is the permutation that sorts all the coefficients in order of decreasing
magnitude.
In Figure 3.12 [SDS96] a one-dimensional function was compressed using
the L2 Haar wavelets. One can see the different compression levels which
were achieved by truncating the coefficients with the smallest value. Several
different methods of thresholding exist. When using hard thresholding, the
coefficients are simply set to zero based on a user or algorithm defined cut-off
value:

c̃i =
{

0 for ci < t
ci for ci ≥ t

(3.14)

32

3.3. Compression 33

Figure 3.12: Wavelet compression using
different amounts of detail information

Soft thresholding shrinks all the detail coefficients towards zero for a given
threshold. This method is often used in biomedical imaging and used for
noise reduction in MRI data sets. The method can be described as:

c̃i =

ci − t for ci ≥ t

0 for |ci| ≤ t
ci + t for ci ≤ −t

(3.15)

Quantile thresholding simply discardes as many detail coefficients as is stated
by the given percentage. The rule for quantile thresholding is:

c̃i =
{

0 for ci < p
ci for ci ≥ p

(3.16)

Here p is the p-quantile of all wavelet coefficients.

Extension to nD

In preparation for volume compression, we need to generalize Haar wavelets
to n dimensions. Here only the extension to two dimensions is shown, but
also explained how it can be further applied for the use in n dimensions.
Again, this in only for the linear-separable Haar basis which works in one
dimension at a time. These kind of filters can introduce some sampling ar-
tifacts due to a preferred directions. Better results can be achieved by using

33

34 Chapter 3. Fundamentals

Figure 3.13: Standard wavelet decomposition
of a 2-dimensional image

non-separable filters. There are basically two ways to use linear-separable
wavelets in order to transform the pixel values within a 2D image. Each one
is a generalization to two dimensions of the 1-dimensional wavelet trans-
form described in the previous sections. The standard decomposition of an
image, applies the 1-dimensional wavelet transform to each row of the im-
age. This operation results in an average value for each row with detail
coefficients for each row. In the next step, each of these transformed rows
is treated as if they were themselves an image and another 1-dimensional
wavelet transform is applied to each column. The resulting values are all
detail coefficients except for a single overall average coefficient. Figure 3.13
[SDS96] demonstrates the principle of standard decomposition.
The second two-dimensional wavelet transform is called the non-standard
decomposition. Here the algorithm alternates between operations on rows
and columns. First, one step of horizontal pairwise averaging and differenc-
ing on the pixel values is performed for each row of the image. Next, vertical
pairwise averaging and differencing on each column is performed on the re-
sults from the previous step. To complete the transformation, this process
is recursively repeated only on the quadrant containing averages in both
directions. Figure 3.14 [SDS96] shows an example of non-standard decom-

34

3.3. Compression 35

position. These two methods of decomposing a 2-dimensional image yield

Figure 3.14: Non-standard wavelet
decomposition of a 2-dimensional image

to coefficients that correspond to two different sets of basis functions. The
standard decomposition of a 1-dimensional wavelet basis consists of all pos-
sible tensor products of 1-dimensional basis functions. When one starts with
the 1-dimensional Haar basis for V 2, it would result in the 2-dimensional ba-
sis for V 2. If the standard construction to an orthonormal basis is applied
in one dimension, the result is an orthonormal basis in two dimensions.
The nonstandard construction of a 2-dimensional basis proceeds by first
defining a 2-dimensional scaling function:

φφ(x, y) := φ(x)φ(y) (3.17)

and three wavelet functions,

φψ(x, y) := φ(x)ψ(y)
ψφ(x, y) := ψ(x)φ(y)
ψψ(x, y) := ψ(x)ψ(y).

(3.18)

35

36 Chapter 3. Fundamentals

The levels of scaling are now denoted with a superscript j and horizontal
and vertical translations with a pair of subscripts k and l. The non-standard
basis consists of a single coarse scaling function:

φφ0
0,0(x, y) := 2jφφ(x, y) (3.19)

along with scales and translates of the three wavelet functions φψ, ψφ, and
ψψ:

φψj
kl(x, y) := 2jφψ(2jx− k, 2ky − l)

ψφj
kl(x, y) := 2jψφ(2jx− k, 2ky − l)

ψψj
kl(x, y) := 2jψψ(2jx− k, 2ky − l).

(3.20)

The constant 2j normalizes the wavelets to give an orthonormal basis.
Both, the standard as well as the non-standard wavelet decomposition can
be extended to n dimensions by either computing the transform for each
dimension separately or be alternating between them. Here the standard
decomposition is easier to use, because it simply requires to perform a 1-
dimensional transform for each dimension before the next one is computed.
On the other hand, it is more efficient to compute the non-standard decom-
position. For an m×,m image the standard decomposition needs 4(m2−m)
operations while the non-standard decomposition requires only 8

3(m2 − 1).
In order to be able to additionally use the wavelet transformed data in a
multiresolution environment, like level of detail volume rendering, the non-
standard wavelet decomposition has to be used. This transforms all dimen-
sions for each resolution level which yields a factor of 2 for the downsampled
image or volume.
Another specification for a wavelet transform is the support of each basis
function. This means the portion of each functions domain where the func-
tion is non-zero. All non-standard Haar basis functions have square support,
while some standard basis functions have non-square support. Depending
upon the application, one of these choices may be preferable to the other.
Because of finite floating point precision, all these methods are not able to
lossless restore an original signal from its low resolution counterparts. This
is one major disadvantage of standard wavelets. Another disadvantage is
that if one does not want to additionally introduce artifacts due to rounding
of the low and high pass parts from floating point into the integer domain,
the lower resolution representation as well as the detail coefficients have to
be stored as floating point numbers. This is a little bit silly if the original
data was given in the integer domain like most images and volumes are. The
next section discusses a different technique for wavelet filtering which allows
to avoid these problems.

36

3.3. Compression 37

3.3.3 Lifting Scheme

The Lifting Scheme is a very efficient implementation of the wavelet trans-
form which does not rely on the existence of the Fourier transform for the
given problem [Swe95]. Wavelets which are generated using lifting are called
second-generation wavelets in contrast to the standard wavelets which are
called first-generation. Second-generation wavelets are more general and
are able to represent all classic first-generation wavelets which have a bi-
orthogonal basis. In fact, all wavelets which can be found using the Cohen-
Daubechies-Feauveau machinery [CDF92] can also be constructed using the
lifting scheme. The decomposition of a classic wavelet filter into the lifting
scheme can be obtained by using the Euclidian Algorithm [DS98]. Also,
second generation wavelets are not necessarily translates and dilates of one
function and can also be applied to problems where a Fourier transform can
not be used as a construction tool, like curved surfaces or on irregular grids
[SS95].
Another advantage of the lifting scheme is that it can be easily extended to
perform a pure integer to integer wavelet transform. It allows a real lossless
wavelet decomposition by avoiding the existing rounding problems. Data
which is given in the domain of bytes or shorts now does not need to be
transformed into four byte float values. This way huge amounts of storage
space can be saved. Also the inverse transform is always easy to find, as
it is as simple as reverting the order of operations and switching + and −.
Other benefits are that it allows a faster implementation, still O(n), by using
similarities between both, the high and the low pass filters. It also allows an
in-place calculation of the transform which saves additional memory costs.
The next sections explain the principle of lifting and discuss how the for-
ward transform works and how the inverse transform can be found. It also
demonstrates how it can be used to perform an integer to integer wavelet
transform.

Dual and Primal Lifting

Wavelets are used to decorrelate a signal into different multiresolution levels.
At each resolution step, the function is split in the low and high frequencies.
These high and low pass parts of the signal are obtained by applying wavelet
filters to the signal. The lifting scheme is a very efficient implementation of
these filter operations. The transform using the lifting scheme can be split
into three parts:

• splitting the signal using the lazy wavelet in the odd and even samples,

• then predicting the even samples from the odd samples and storing
the prediction error as the even samples(dual lifting), and

37

38 Chapter 3. Fundamentals

• updating the odd samples to maintain the bias of the low frequency
part (primal lifting).

Formally this would be represented as follows:

• split λj+1 → (λj , γj),

• dual lifting γj − P (λj) → γj , and

• primal lifting λj + U(γj) → λj .

Here, γj and λj are the odd and even samples of the original signal for the
current wavelet level j. To continue with Example 3.3.2:

λj+1 = [1, 7, 4, 0]

Example 3.7: Lifting scheme

represents a one-dimensional discrete signal of length 4. This signal can now
be split using the lazy wavelet into two parts:

λj = [1, 4] γj = [7, 0]

Example 3.8: Split

The lazy wavelet only divides the signal and creates two functions, one with
the odd and another one with the even samples of the original signal. The
lifting is now performed in two steps, primal and dual lifting. In the dual
step λj is used to predict γj and the prediction error is stored in γj . The
prediction is dependent on the used wavelet, but for the simple Haar box
example the prediction for Example 3.3.3 is:

γj = [2.5, 4]

Example 3.9: Prediction

Care has to be taken on the boundary of a data set. There are mainly
two different possibilities of how to treat boundaries. The first one assumes
a periodic signal where the given function is periodically extended at the
boundary. The other option is to assume that the signal is symmetric where
the function is mirrored at the border. Usually the later one gives better
results and is used more often.
Now these γj are replaced by the error of this prediction:

γj = [4.5, −4]

Example 3.10: Update

The new γj represent the wavelet coefficients, or in other words the detail
information which is necessary to reconstruct λj+1 from λj . In this example
the coefficients seem to be very high, but this is due to the chosen example.
Usually one can assume a correlated function where pixel values can be
interpolated from their neighbours without introducing huge artifacts. In
order to avoid aliasing, λj needs to be adjusted in a way that the average of

38

3.3. Compression 39

the λj,k coefficients are the same for all resolutions, i.e. the mean value of
the image has to be the same,with k as the current wavelet level:∑

k

λ−1,k =
1
2

∑
k

λ0,k (3.21)

This is performed when primal lifting the λ−1,k with the help of the detail
coefficients γ−1,k:

λ0,k = λ−1,k +
1
4
(γ−1,k−1 + γ−1,k). (3.22)

Now, the final low and high pass version of Example 3.3.3 using integer
lifting is:

λj = [1, 4] γj = [7, 0].

Example 3.11: Lifting wavelet decomposition

These steps can now be repeated by iteration on λj in order to create a
multiresolution version of the original signal.
The next section shows how easily the inverse transform can be found and
how the algorithm can be adapted to perform an integer to integer transform.

Inverse Transform

One of the great benefits of using the lifting scheme is that the inverse
transform can be easily derived from the forward transform. As the forward
transform can be split into three simple steps, the inverse transform can too.
Each of these steps is invertible and they just need to be executed in the
opposite order. The inverse transform can be found by simply reverting the
order of operations and changing every + into a − and vice versa:

• inverse primal lifting λj − U(γj) → λj ,

• inverse dual lifting γj + P (λj) → γj , and

• merge (λj , γj) → λj+1.

First, the λj need to be updated in the inverse direction so that λj contains
the values of the odd λj+1 samples. After this, γj is determined by using the
updated λj and the detail coefficients currently stored in γj . Now in the final
merging process, the odd and even samples are put together and one yields
the next resolution level λj+1. To reconstruct λj+2 one needs the next detail
coefficients from γj+1 and repeats all these steps until the original resolution
is reached.
While both parts - λj and γj - still need floating point computation to
accurately reconstruct the function, the next section will explain how the
lifting scheme can be easily converted into an integer to integer wavelet
transform.

39

40 Chapter 3. Fundamentals

Integer Wavelet Transform

Wavelets have many applications besides image, video, or volume compres-
sion. But most data sets are given in the integer domain and is undesirable
to first convert them to floating points and then do the forward wavelet de-
composition and store the low and high frequencies also as floating points.
Of course, because one wants to compress the data sets and eventually do
lossy compression, the floating points could be rounded to the next integer
and stored in this way. But this would introduce additional artifacts and
would not allow one to do lossless compression even if one would keep all
the detail coefficients.
The lifting scheme can aid for this problem. The advantage that the inverse
transform is the exact reversal of the forward transform can be exploited
to achieve a real lossless integer to integer wavelet transform which would
allow a perfect reconstruction of the original signal. Since divisions by 2 are
performed during the lifting step when Haar is used, the prediction values
P(λj) as well as the update values U(γj) are floating point numbers. These
numbers can be rounded to the next possible integer and then the dual and
primal lifting step look like this:

• dual lifting γj − {P(λj)} → γj , and

• primal lifting λj + {U(γj)} → λj .

The place where rounding occurs is marked by the curly braces. The inverse
transform looks similar:

• inverse primal lifting λj − {U(γj)} → λj , and

• inverse dual lifting γj + {P(λj)} → γj .

Here one can see that in both cases the P(λj) or U(γj) are either added or
subtracted. That means that if one uses a deterministic method to round
P(λj) and U(γj) there will be no error in the reconstruction of the signal
and all the low and the high frequency parts can be stored as integers.
This is a great advantage for the lifting method which allows now to perfectly
reconstruct a signal while still storing only integers. This is very important,
especially when dealing with huge data sets. Other benefits are the in-place
calculation and a fast decomposition and reconstruction of the signal.

3.4 Conclusions

All the techniques which were discussed so far are well known and more
or less often used in practice. In order to be able to interact in realtime
with the visualization, i.e. change the viewpoint or other render relevant
parameters, the used technique must be very fast. Some volume rendering
algorithms already fail at this point because they are too slow. Raycasting
has a very high image quality, but is too slow for the rendering of large

40

3.4. Conclusions 41

data sets. The fastest volume rendering technique is Fourier domain volume
rendering which also allows to gradually change the image quality to gain
faster interaction, but one huge drawback is that no occlusion effects can be
used and that the images only have an X-Ray character. Another very fast
technique, which was chosen for the implementation, is the exploitation of
3D texture mapping hardware. Even though, this technique needs special
hardware, it becomes available for more computers with the introduction of
new consumer graphics hardware [nvi01] [ATi01]. The image quality is also
very good as this technique simulates the raycasting approach. One draw-
back is the available texture memory which can be extended by successively
rendering parts of the volume. A short summary of the advantages and
disadvantages of these techniques can be seen in table 3.1: Several methods

Ray casting Splatting Shear-Warp 3D Texture
Sampling free free fixed free

rate
Sample point averaged point point

evaluation based based based
Interpolation tri-linear Gaussian bi-linear tri-linear

Spline
Rendering post- post- pre- pre- and post-

classification classification classification classification
Acceleration early ray early splatt RLE hardware

termination termination
(hardware)

Precision float float float 8bit (float)
Voxels all relevant relevant all
visited

Table 3.1: Volume rendering techniques

can be used to make the data more manageable. Compression techniques,
as the discussed Haar wavelet, can be employed to store the data more ef-
ficiently on the hard disk and in main memory. Here another advantage of
wavelets is the multiresolution approach. Together with volume rendering
using texture mapping hardware, this feature can be used to have an adap-
tive Level-of-Detail for each brick. Due to finite precision rounding, data
which was compressed using standard wavelets can only be reconstructed
lossy. Even if all detail coefficients are kept, some information will be miss-
ing. The lifting scheme on the other hand allows the wavelet decomposition
and a lossless reconstruction. This is very valuable, especially for medical
data where a precise visualization is necessary. Hence this technique was
chosen for the implementation.
Signal processing and lattice theory can be used to resample the given data
set onto another grid which stores the data more efficiently. Here the BCC
lattice for 3D and the D∗

4 lattice for 4D are used in the implementation. A
big advantage of this is that the number of samples is directly related to the

41

42 Chapter 3. Fundamentals

execution time. Fewer samples means faster rendering with no loss in image
quality.
All these methods are covered in more detail in Chapter 4. Some selected
methods are implemented which are described in Chapter 4 as well as in
the Chapters 6 and 7. Chapter 5 discusses possibilities and constraints of
multiparameter techniques which can be used to visualize the fuel cell data.

42

Chapter 4

Realtime Visualization

The ability to interact with an object is of major importance in order to
find out what it is and what features are present. As a Chinese proverb
says: A Picture is worth a thousand words, it could probably be extended to
Interaction is worth a thousand pictures. In computer graphics, the feeling
of looking at a 3D object comes from the interaction with it, the possibility
to look from different angles and maybe under different lighting conditions.
This enables one to integrate over all pictures and to create a mental model
of this object. This is very important in order to know what one is looking
at. While this is easy for small data sets, it becomes even more difficult for
big data sets. Some modalities of the visible human data set [Set] occupy
several gigabytes of storage space. While large hard disks are available, main
memory and the processing power is still limited to handle these data sets
in real time.
All of the volume rendering techniques which were covered in the last chap-
ter can not directly be used to render these data sets. A large number
of optimizations have to be implemented in order to get slow interaction.
Processing power and main memory is too limited to use software based ren-
dering techniques like ray casting [Lev88]. Even though, the focus is on fast
rendering, image quality has also a big influence. Fourier domain volume
rendering [TL93] is a very efficient implementation, but the image quality
lacks real depth and occlusion information. Special hardware methods like
the Volume Pro [PHK+99] can not be used because of the limited on board
texture memory. The techniques which could be extended to handle large
volume data sets are Splatting [Wes90], Shear-Warp [Lac95] and volume
rendering using texture mapping hardware [CCF94]. Even though texture
memory is limited for OpenGL hardware accelerated volume rendering, this
technique was chosen as the basis for the volume rendering algorithm. A
special bricking scheme can be used to extend the OpenGL texture memory
[vGK96]. This straight forward bricking method is extended in this thesis
and in addition compression techniques and a different lattice were used to

43

44 Chapter 4. Realtime Visualization

reduce the storage space and to increase the frame rate.
This Chapter describes one part of the main work for this thesis. A render-
ing system with several improvements was built that allows one to interac-
tively visualize volumetric data sets. Interaction is available for exploring
the current time frame from orbiting around the volume, changing transfer
functions- and rendering parameters as well as by switching to a different
time frame.
The method to achieve these results can be divided into two steps, a pre-
processing and the final rendering step. A rough outline of the pre-processing
step is:

• transform data into BCC or D∗
4,

• subdivide data (split and merge),

• compress each brick depending on its importance, and

• save the data.

The rendering step can be described as:

• load data,

• determine the visibility for each brick,

• uncompress remaining bricks to required resolution level,

• sort bricks from back to front, and

• render bricks from back to front and perform classification and shading
in hardware.

In the pre-processing step, the entire data set is resampled onto a more ef-
ficient grid which helps to save a huge amount of data without impairing
the frequency domain. Hence, this is some sort of lossless compression tech-
nique. For 3D data sets, the BCC lattice and for 4D the D∗

4 lattice was
used. Using these lattices, one only needs 70 percent of the samples for 3D
and only 50 percent of the samples in 4D to represent the same information.
Section 4.1 explains this in more detail.
For the final rendering of the data set OpenGL hardware is used to perform
the visualization in hardware. Here the capabilities of 3D textures of new
graphics board are exploited to simulate ray casting in hardware [Lev88].
The data is loaded as 3D texture into the texture memory and then sam-
pled at viewport-aligned slices. These slices are alpha blended from back to
front and the resulting images look similar to those generated by software
ray casting. Because of the limitation of available texture memory, 128 MB,
volumes which are bigger need to be rendered in smaller pieces. Here a
bricking algorithm was developed that subdivides the volume into parts of
similar importance and that will fit into texture memory. To create these
volumes, the original volume is subdivided into small cubes and for each
cube the information content is derived. After this, cubes with an impor-
tance below a certain threshold are discarded and not used, all other are

44

4.1. Body-Centred-Cubic Grids 45

merged into bigger bricks of similar importance.
After the subdivision, the 3D/4D bricks are compressed using wavelets and
the lifting scheme. This allows not only to save additional memory costs
when saving the data and working with it in main memory, wavelets also
build a multiresolution version of the data set. To speed up the decompres-
sion, wavelets are only used up to the third or forth level. For time-varying
data sets, each 3D volume is stored separately in order to not have to decom-
press the entire data set when visualizing only one time frame. Currently
only the mean, the contrast and the entropy are used to determine the im-
portance of a cube.
As said above, the final rendering is accomplished using OpenGL accelera-
tion. To perform shading and classification some advanced features of mod-
ern graphics accelerators, such as texture shaders and register combiners, are
used. This hardware accelerated volume rendering not only allows direct vol-
ume rendering, also other techniques, like maximum-intensity-projection or
x-ray images, can be simulated using some special blending functions.
This chapter is organized to follow the rendering pipeline from the pre-
processing to the final visualization. The first section explains in detail how
storage space and hence also render time can be saved by using a more
efficient grid (Section 4.1). It proves that by using the BCC lattice, respec-
tively the D∗

4 lattice, 30 or even 50 percent of the samples are sufficient
to represent the same amount of information. After this, the next section
shows how coherency in the data can be used to increase the compression
ratio and the render speed without introducing too many artifacts (Section
4.2). Multiresolution and compression benefit from this coherency and are
explained one section later (Section 4.3). Also, level-of-detail rendering is
used to decrease the rendering time. Finally, in the last section, volume
rendering using texture mapping hardware is explained (Section 4.4). This
section also describes which methods were used to extract gradient informa-
tion and which techniques are used to achieve good image quality through
shading and classification.

4.1 Body-Centred-Cubic Grids

Since the beginning of science, researchers have always observed nature and
tried to adapt some of these ideas for other applications. The observation
of nature can also be very valuable in the field of data compression. Bees
build their honeycombs using hexagonal cells, and as a result they achieve a
minimum expenditure of wax. Many crystals also exhibit hexagonal spacing
to achieve a minimal energy state.
In computer science one huge problem is the size of the data sets. This is
an acute problem not only within volume visualization. With consistently
increasing processing power and memory capacity, the calculation of more

45

46 Chapter 4. Realtime Visualization

detailed simulations is possible which consequently results in bigger data
sets. Medical equipment is evolving as well and allows now more precise
scans of the human body than ever before. But these data sets sometimes
require storage capacities of gigabytes or even terabytes. New techniques
to aid in the handling of such big data sets are needed. One method is
to simply use a more efficient lattice to sample and store the data set. A
lattice is a special kind of a grid which is constructed by using one point cell,
the origin, and base vectors which are used to construct all the other grid
points. As a result, lattices can be described as matrices. A grid itself is a
possible arrangement of sample points and can not always be described like
a lattice. The most often used lattice is the CC-Lattice, or Cubic Cartesian
lattice. Its advantage is the simplicity in storage and accessing data values
because the indices are inherently included in the lattice. The matrix which
constructs a 3D CC Grid can be seen in Equation 4.3in the next section.
A disadvantage of the cubic grid is that it is not very efficient in storing
these samples. One of the most efficient lattices for 3D space is the BCC
lattice, or Body Centred Cubic lattice. The matrix which describes the
BCC lattice can be seen in Equation 4.7 in the next section. BCC lattices
are well known from crystallography [Jac91], chemistry [Wel84] and solid
state physics [AM76], but rather unknown in computer science. Hexagonal
grids are also known in mathematics and refer to the closest sphere packing
problem [Slo98]. Equation 4.1 shows the relationship of a sample matrix for

Figure 4.1: Delauny regions of the CC lattice
a), and the BCC lattice b)

a lattice in the spatial domain and the corresponding frequency replicator
matrix. Here V denotes the sample matrix for the spatial domain and U
the replicator matrix in the frequency domain. I is the identity matrix.

UV T = 2πI (4.1)

46

4.1. Body-Centred-Cubic Grids 47

These two matrices are directly proportional which means that if one would
be able to pack the samples in one domain closer together, they can be
taken further apart in the other domain. This refers to the closest packing
of spheres or spectra in the frequency domain. One requirement is that the
spectra in the Fourier space need to be isotropic and (hyper-)spherically
bandlimited. Because the spectra are stored more densely in the frequency
domain, the samples are further apart in the spatial domain, and hence one
can represent the same amount of information with less samples without
impairing the frequency domain. The BCC grid is the most optimal sam-
pling grid in terms of the Shannon theorem [Sha49], and is the best grid to
implement discrete mathematical morphology algorithms [Ser82]. Its sym-
metry helps to simplify the definition of algorithms like Marching Cubes
[IHR96] and the relation to optimal sphere packing makes it interesting for
tomographic image reconstruction as well as lossless compression. Lossless
compression is only warranted if the data is reconstructed and sampled onto
a BCC lattice and spherically bandlimited. Data sets which are sampled on
the CC lattice can be resampled onto the BCC lattice (Section 4.1.4).
Figure 4.1 shows the basic neighbourhood relations for a CC and a BCC
grid. It can be seen that a point in the BCC grid has more neighbours than
a point in the CC grid. This allows for finer line tracing, like the Bresenham
algorithm, than it is possible in the CC lattice, Figure 4.2. Hexagonal grids

Figure 4.2: Bresenham for the CC lattice a),
and the BCC lattice b)

are also used in imaging and image processing. Here the advantage is on
sampling non-axis parallel lines. Staunton et.al. [SS89] have shown that
image processing operators on hexagonal grids are computationally more
efficient, and as accurate, as their square counterparts.
The first time the BCC grid was used for scientific visualization was for ray
casting medical image data sets [IHR97]. Ibáñez et.al. adapted a raytracer
to work with the BCC lattice by using a customized Bresenham algorithm
for hexagonal grids. Later, body centred cubic grids were also applied to
Westovers Splatting algorithm by Teußl et. al [TMG01]. They adapted a
splatting algorithm for the BCC lattice and showed that this implementa-

47

48 Chapter 4. Realtime Visualization

tion speeds up the rendering process by the same ratio as less samples are
needed to represent the original signal in the CC lattice. Other recently for
the BCC grid adapted visualization algorithms are iso-surfaces using March-
ing Hexahedra [CTM02] and the Shear-Warp volume rendering [SM02].
The next sections explain in more detail how optimal sampling in 3D and
4D work. It also proves that the sampling is correct and how an optimal
lattice can be constructed for the nD case. Interpolation and resampling,
i.e. how to transform a given CC data set into BCC or D∗

4, are discussed as
well.

4.1.1 Optimal Sampling in 3D

A basic requirement for functions that are sampled to or into the BCC
lattice is that they are isotropic and hyperspherically bandlimited. This
guarantees that the frequency response is restricted to hyperspheres. To
reconstruct the original continuous signal, the samples in the spatial domain
need to be close enough so that the aliased spectra in the frequency domain
do not overlap. For optimal sampling, the number of samples which fulfill
this condition is minimal and is known as the Nyquist frequency [Sha49].
To sample optimally in higher dimensions, aliased spectra in the frequency
domain have to be packed as close as possible. This is known as the closest
sphere packing problem [Slo98].
For any bandlimited waveform, there is an infinite number of possible choices
for the periodicity matrix U and the appendant sampling matrix V . The
most often used sampling lattice is the rectangular Cartesian grid, where
the sampling matrix is simply diagonal. Equation 4.3 shows such a matrix
for the 3D CC Grid. Sampling a function can be seen as the mapping from
indices to the actual sample position:(

x
y

)
= V ·

(
i
j

)
(4.2)

Here i and j are the indices of the sample point and x and y is the corre-
sponding sample position. The matrix V is the sampling matrix for the CC
lattice:

Vrect3D =

 T1 0 0
0 T2 0
0 0 T3

 (4.3)

For the regular Cartesian grid applies T1 = T2 = T3 and is usually equal
to 1.0. But regular rectangular sampling in 3D is by far not optimal. An
optimal sphere packing for arbitrary packing structures in 3D is not known,
but there exist a few packing structures for 3D, which all have the same
packing density less than regular Cartesian grid [CS88]. One example is
the face centred cubic grid (FCC). The hexagonal close packing (HCP) which

48

4.1. Body-Centred-Cubic Grids 49

has similar qualities as the FCC lattice can not be described with a matrix.
The replicator matrix for the 3D FCC grid can be used in the frequency
domain to achieve a more dense packing:

UFCC = UT
FCC =

 u 0 u
0 u u
u u 0

 (4.4)

The FCC lattice consists of a cubic cell with additional sampling points at
the centre of each cube side (face). The kissing number, i.e. the number of
how many neighbouring spheres a sphere touches, is 12. Figure 4.3 c) shows
an FCC cell with the appropriate distances between the sample points. FCC

Figure 4.3: CC lattice a), BCC lattice b), and
FCC lattice c)

grids are found in the real world in fruit stands or in piles of cannon balls
on war memorials. By transforming Equation 4.1 and by plugging it into
4.4 one yields:

UTV = 2πI

V = 2π(UT)−1

VBCC = 1
2

 T −T T
−T T T
T T −T

 (4.5)

with T = 2π
u . As can be seen from Figure 4.3 b) a BCC lattice consist of a

cubic cell with one additional sampling point in the cell centre. The BCC
lattice can also be interpreted as two interwoven cubic grids. Here applies:

T1CC1 = T1CC2 , T2CC1 = T2CC2 , and T3CC1 = T3CC2 , (4.6)

49

50 Chapter 4. Realtime Visualization

with TkCCl
as the kth base vector for the lth CC lattice.

While some of the base vectors of Equation 4.5 are negative and rather
unintuitive to use, a different yet better set of base vectors is [CS88]:

VBCC =
1
2

 T 0 1
2T

0 T 1
2T

0 0 1
2T

 (4.7)

The 3D Fourier transform F of a spherically, Cartesian bandlimited signal
has the feature:

F(ω1, ω2, ω3) = 0 with ω2
1 + ω2

2 + ω2
3 ≥W 2. (4.8)

Because the data set is bandlimited, W is the maximum representable fre-
quency, the Nyquist frequency. To guarantee that the replicas in the fre-
quency domain do not overlap, u = 2π

T must be larger or equal to 2W for
regular Cartesian sampling [Sha49]. Calculating the sampling matrices from
these periodicity matrices, one yields:

Vrect3D =

 π
W 0 0
0 π

W 0
0 0 π

W

 , (4.9)

with:

|detVrect3D| =
π3

W 3
, (4.10)

and for the FCC lattice, u must be equal to
√

2W which results in:

|detVBCC | =
π3

W 3

√
2. (4.11)

The ratio between Vrect3D and VBCC now is:

|detVrect3D|
|detVBCC |

= 0.707, (4.12)

which proves that one needs only as many as 70.7 % sampling points to
display the same amount of information than the 100 % for the regular grid.
The sampling distance in the third dimension decreases by

√
2 while the

samples are
√

2 further apart in the other two dimensions..
A big advantage of using the FCC grid in Fourier and the BCC grid in the
spatial domain, is that the indexing and storage scheme for the BCC grid
is similar to the one which is used for regular grids. All data can still be
stored in a 3D array with an inherent indexing scheme. The even slices
remain at their position and the odd slices need to be shifted by 1

2 in x and
y directions. Here one can again see that the BCC grid can be described
as two interwoven regular Cartesian grids, one with the even and another
one with the odd slices. This quality can also be exploited for rendering 3D
BCC data sets using texture mapping hardware.

50

4.1. Body-Centred-Cubic Grids 51

4.1.2 Optimal Sampling in 4D

For the 1-dimensional case the ratio of the efficiency of the cubic lattice
to a hexagonal lattice is 1.0. That means both lattices are equal. This
is not a surprise, however in 2D the efficiency is about 0.86 and for 3D
already at 0.707. This decreases further with higher dimensions and shows
how inefficient the CC lattice is. This section explains how the spherical
lattice for the n-dimensional case can be found and proves this as well as
the efficiency ratio for the 4-dimensional case. In 4D a sampling matrix

Figure 4.4: D∗
4 lattice

can be used that allows to save 50 percent of the original samples while
assuming that the spectra are hyperspherically bandlimited. In general, the
lattice for the nth dimension can always be constructed by taking the n− 1
base lattice, e.g. the n− 1 CC lattice, and offsetting and interleaving it for
the nth dimension. The 4D hexagonal lattice can be seen as several 3D CC
grids which are offset by T√

2
in all 4 directions x, y, z and t. Similar to the

BCC grid, the 4D grid can also be seen as been built by two 4D CC grids
which are interleaved by T√

2
in x, y, z and t. Figure 4.4 shows the 4D BCC

lattice where the two 4D CC cells have been pulled apart along the time
axis.
The sampling matrix for a 4D regular Cartesian grid is as follows:

Vrect4D =

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 T4

 (4.13)

As for the 3D case, it also applies for the 4D Cartesian grid that usually
T1 = T2 = T3 = T4 with Ti the sampling distance for n. For the regular CC
grid, typically Ti = 1.0 is used. As for the like the 3D CC grid, this lattice
is not very efficient for sampling and storing data sets. The densest sphere

51

52 Chapter 4. Realtime Visualization

packing for 4D is know as the checkerboard lattice D4. The sampling matrix
V for the D4 lattice is:

VD4 =

2 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 (4.14)

Here the centres for the spheres are all the points u1, u2, u3, u4 which add to
an even number. For instance 1, 0, 1, 0 is allowed while 0, 1, 0, 0 is not. This
principle gave the name to the lattice. The kissing number is 24 and the
minimal distance between the centres is

√
2. This is minimal for 4D.

While Equation 4.14 is not very intuitive, a better one exists in the dual
space D∗

4 [CS88] which can be derived from:

M∗ =

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1
2

1
2

1
2 · · · 1

2

. (4.15)

With the proper scaling factor one yields the D∗
4 sampling matrix:

VD∗
4

= T
√

2

1 0 0 0
0 1 0 0
0 0 1 0
1
2

1
2

1
2

1
2

 . (4.16)

In general all other sampling matrices for nD can be derived from M∗.
Again, the D∗

4 lattice can be considered as build by two 4D CC grids which
are offset by T√

2
in x, y, z and t. The sampling distance along t is decreased

to 1√
2
. So we actually have

√
2 more slices along the time axis, but at the

same time, each cube has 1√
2
3 less samples because the sampling distance

in x, y and z is increased. With
√

2 more samples along the 4th dimension,
the efficiency ratio of the D∗

4 lattice over the standard regular CC lattice
becomes: √

2
√

2
3 =

1
2

(4.17)

This proofs that by sampling a time-varying data set into D∗
4 one can get

away with 50% of the samples without damaging the frequency content. This
is, of course, only true if the data is hyperspherically bandlimited, which can

52

4.1. Body-Centred-Cubic Grids 53

be assumed for most data sets. While we still have only 3D regular textures
and the texture memory is rather limited and does not support hexagonal
sampling yet, one has to think on how to slice the D∗

4 lattice in order to
extract 3D volumes which can be rendered. There are several possibilities
which will be covered in the next section.

4.1.3 Slicing D∗
4

If no 4D visualization techniques are used, for examples see Chapter 5.6, one
has to slice the D∗

4 lattice in order to extract either a 3D volume or a 2D
slice prior to the visualization. To extract a slice, several techniques can be
used. The most simple one would be to evaluate the plane equation for <4:

ax+ by + cz + dt+ e = 0 (4.18)

to extract an arbitrary oriented hyper slice. In Equation 4.18 a, b, c and d
represent the normal of the plane in 4D space and e is the distance from the
origin. Using higher order interpolation, one can extract an arbitrary 3D
volume and display it through volume rendering or other visualization tech-
niques. Because most 4D data sets are time-varying and hence all volumes
are topologically identical and refer to the same location in space, it is more
intuitive to slice perpendicular to the 4th dimension, in this case the time
axis t. If one considers that the D∗

4 lattice is constructed by taking the n−1
CC lattice and offsetting them in the 4th dimension, one could come up with
a simpler and less computationally expensive method. Additionally the 4D
data set could be stored in several 3D arrays and each of these arrays can
be compressed separately. This is very convenient for huge data sets which
can occupy several gigabytes of memory. These 3D arrays represent data
which is actually sampled into D∗

4 but which is decomposed into several 3D
CC lattices.
The data which is extracted is actually sampled into 3D BCC. For slicing
D∗

4 two different methods can be used. The most simple one would be to
directly render the 3D CC volumes which where built by the resampling into
D∗

4. The size of each of these volumes is only:

1
√

2
3 = 0.35, (4.19)

of the original size of one volume/time-frame. This is because the sampling
density has been decreased in all three dimensions. However, in the 4h di-
mension are

√
2 more samples/volumes.

A different approach which would result in better image quality is to first
reconstruct a BCC grid out of the three neighbouring CC volumes. Because
all volumes have a shift in time by 1

2 , first the second BCC volume has to be
interpolated from the two CC volumes at t− 1 and t+ 1. This reconstructs

53

54 Chapter 4. Realtime Visualization

a 3D BCC volume at time step t.
The interpolation is straight forward and higher order interpolation schemes,
like cubic or spline interpolation can be used. If one would apply a different
weighting to these slices, one would be able to interpolate arbitrary in time
which would result in a signal that is continuous over time. Hence the tran-
sition between two time frames is smooth and this would yield a continuous
animation over time.
The next section explains how interpolation can be performed and how the
data sets can be transformed into a hexagonal grid.

4.1.4 Resampling and Interpolation

This section explains how the interpolation in the BCC grid is performed and
which filters can be used for hexagonal lattices, especially for the 3D BCC
lattice. It also explains how regular Cartesian data sets can be resampled
onto hexagonal grids.
Sampling and interpolation can be performed in the same way than on the
Cartesian grid, except that some different weighting schemes have to be used
due to the different grid topology. Geometrical transformations on discrete
grids can be computed directly for only a few cases, like rotation about 90◦ ·i
for i ∈ N . To sample a function on arbitrary positions, the function values
in between have to be interpolated which can be realized using a standard
convolution [KOPR97]:

f(x, y, z) =
∑

l

∑
m

∑
n

f(l,m, n)h3D(x− l, y −m, z − n), (4.20)

with h3D being the interpolation mask in 3D.
Figure 4.2 shows the Delauny neighbourhood for both, the 3D CC and the 3D
BCC lattice. The Delauny neighbourhood for the cubic grid is a cube. That
means that each point in the CC lattice has eight nearest neighbours which
need to be included and weighted in the interpolation scheme. The evalua-
tion of this cube implies the computation of a cubic polynomial. Common
PC rendering hardware for 3D textures only support tri-linear interpolation
between samples which is not perfect, but sufficient in most cases. The De-
launy neighbourhood for the BCC lattice is a tetrahedron. Here each point
has only four nearest neighbours and hence only these need to be considered
for the interpolation. However, it results in better image quality when the
surrounding 8 or 14 points are considered as well.
Sampling corresponds to a copying of the spectra in frequency domain. The
original signal can be reconstructed using an ideal box filter in the frequency
domain. The corresponding filter in the spatial domain is the sinc filter
[OS75], Equation 4.21, which can not be used in practice because of its in-

54

4.1. Body-Centred-Cubic Grids 55

finite range. Hence the goal is to find a filter that approximates the sinc
filter.

sinc(x) =
sin(πx)
πx

(4.21)

The easiest solution is the nearest neighbour filter which simply uses the
closest sampling points. The result is a somewhat blocky signal. Better
interpolation can be achieved by using a linear interpolation or interpolating
higher order polynomials which weight the sampling points by distance and
really interpolate at the new sampling position. Very good results can be
achieved using the Lagrange polynomial [KOPR97]:

kk
Ln(x) =

{ ∏k
i=1(1−

x2

i2
) for 0 ≤ |x| ≤ n

2
0 else

, (4.22)

with k the order of the polynom and n the number of supporting points.
For very high orders (k ≥ 500) the difference between the sinc filter and
the interpolation polynom is neglectable. The disadvantage is that this in-
terpolation is computational very expensive. Cubic filters were used for the
resampling of the regular data sets onto the BCC or D∗

4 lattice.
When resampling a signal from one lattice to another one, the same princi-
ples for interpolation apply. First one tries to reconstruct a continuous signal
from discrete sampling points and then resample the signal on different sam-
pling positions. The same filters which were used for interpolation can be
applied here. Because this resampling is done only once in a pre-processing
step higher order filters can be used to achieve a good approximation.
For the interpolation step that needs to be performed during the rendering
process, a faster implementation has to be used. Because volume rendering
is performed in hardware, the interpolation has to be done in hardware as
well. For 3D textures tri-linear interpolation is used. For rendering BCC
textures, two texture units have to be used and the interpolation works only
on the texture unit where the texture is assigned to. Hence in the interpo-
lations step, not all sampling points can be considered for the interpolation
in one texture unit. This 4th linear interpolation step is performed when
the two textures are blended together by using multi-texturing and alpha
blending.
Chapter 4.4 discusses the sampling which is performed during the rendering
in more depth, while Chapters 7.2 and 7.3 give some details for the imple-
mentation.
Once the data is resampled on the BCC lattice some other pre-processing
steps like the computation of the multiresolution version and data compres-
sion can be invoked. The next section explains how spatial and temporal
coherency in the data can be used to achieve better compression results and
an increased rendering speed.

55

56 Chapter 4. Realtime Visualization

4.2 Coherency

The use of more efficient lattices helps to reduce the data size and to store
the data in a more economic way. Often this is not enough and the data set
is still larger than the memory which is available on the graphics hardware.
With the 128 MB available on some of the GeForce series graphic boards,
one could store data sets up to a size of 5123 if they are stored with one byte
per sample point. The data can be allocated as a simple 3D texture with
one component. If one needs to include shading as well, then one would
have to allocate a 3D texture with four components, three for the normal
or gradient and one for the intensity value. This significantly decreases the
available texture memory space. Farther all buffers, like frame- and z-buffer
have to be deducted from the available memory because these buffers are
defined on the same memory. This shows that further improvements are
necessary in order to render huge data sets.
Data sets that do not entirely fit into texture memory can be split into
smaller bricks and rendered separately. One actually has three cases to ren-
der data using texture mapping hardware. The first one is that the data
fits entirely into texture memory and one has only one single brick. This
is the easiest and also the fastest solution because the data can be kept in
texture memory and does not need to be reloaded every frame. If the data
is bigger, it can be split into several bricks of the largest texture size that
can be allocated. This is the simple and often used approach for huge data
sets [vGK96]. For a more efficient subdivision of the data, two forms of
coherency can be used to improve this simple solution.
The first one is spatial coherency, which uses information from neighbouring
bricks and tries to merge these regions together that have a similar impor-
tance or entropy. This results in bigger bricks which reduces the number of
texture loads. Additionally, one can effectively use Level-of-Detail to render
each brick using its own unique LoD. Empty regions can be skipped which
decreases the number of texture loads and the amount of data that has to
be transferred to the graphics card.
The other form of coherency is the temporal behaviour. Here an error metric
is used for time-varying data sets to decide if the texture of a given brick
needs to be changed once the user selects a different time frame. If some
of the textures can remain, these bricks do not need to be updated and a
faster response is the result if a new frame is chosen.
The next section explains the bricking method in more detail and what
problems or artifacts might occur when a multiresolution representation of
the volume is used. The following two sections after, discuss the use of
spatial and temporal coherency and how the importance of a brick can be
computed.

56

4.2. Coherency 57

4.2.1 Bricking

Bricking is a technique that is used to render volumes using texture map-
ping hardware that exceed the limit which is defined by the available texture
memory. Because of internal definition, all textures that can be used with
OpenGL need to be of 2n in each dimension. Even though recently a new
extension was introduced that enables one to use textures without this re-
striction, the hardware still allocates the next power of 2 texture size. The
advantage of this extension is that only the data that is needed has to be
transferred over the AGP bus. For huge textures that just exceed the next
smaller texture resolution, the speed up can increase by a factor of nearly
eight for 3D textures. Unfortunately this extension is not available yet for
3D textures. Textures have to be zero padded to the next power of 2 before
transferring them to the graphics hardware [Kil01].
Volume rendering using 3D textures was introduced by Cabral et.al. [CCF94]
in 1994. The first computer which supported this in hardware was an SGI
with the Infinite Reality Engine I. The available texture memory was rather
limited and only 4MB in size. In order to be able to use bigger textures van
Gelder et.al. [vGK96] developed a solution called bricking which simply
divides large textures and renders each brick individually.
Because the volume rendering algorithm simulates the over operator by us-
ing alpha blending [CCF94], each brick is sliced and composed from back
to front. In order to render the bricks correctly, they have to be sorted prior
to the rendering in a back to front manner. For uniform bricks which all
have the same size, the order is inherent in the brick’s location. One only
needs to store all the different cases which can occur and while rendering,
chose the one depending on the camera position which is most parallel to
the viewing plane. A similar technique was used by Kilthau et.al [KM01]
for fast cache coherent splatting of volumetric data sets.
For uniform bricks which do not all have the same size, e.g. one is 2563

and another one is 643, the ordering can be simply done by using the angle
between the camera and each brick centre. The brick which has the largest
angle is farthest away and rendered first, while the one with the smallest
angle is rendered last. The sorting can be done by using Bucketsort [Sed88]
which has an average complexity of O(n).
For non-uniform bricks, the sorting can be rather difficult, because one would
actually have to sort over all 8 corners of each brick in order to find out which
brick needs to be rendered first. Additionally the absolute ordering of the
bricks along the x, y and z direction has to be included to use the topology
or brick structure in the sorting. Then these arrays can be used in some sort
of sweeping algorithm where a sweeping plane from the back of the data set
is passed through the volume which decides which brick gets rendered first.
Existing bricking algorithms subdivide the entire volume, regardless of what
it contains into the biggest possible texture chunks and then render each of

57

58 Chapter 4. Realtime Visualization

these textures in a back to front manner. This approach could also be de-
scribed as greedy or brute force bricking, because it does not pay attention
to areas which are empty or contain unimportant data such as air or noise.
The bricking algorithm which is used for this implementation goes a little
further. It can handle uniform as well as non-uniform bricks of different
sizes and different resolution. It also incorporates the nature of the data by
taking the spatial and the temporal coherency of the data set into account.
These two qualities will be explained in more detail in the next two sections.
Figure 4.5 a) shows an example of how a volume might be divided into eight

Figure 4.5: Simple bricking a), and artifacts b)

bricks. Here the bricks are ordered in the same way as they will be rendered.
The farthest brick (1) will be rendered first. In order to avoid interpolation
artifacts the bricks must be loaded with boundary voxels which are not used
for rendering, but for proper interpolation while resampling the texture. If
one would just divide the texture by half and not use overlapping bound-
aries, the interpolation at the border would be wrong and clearly be visible
as white lines at the brick border, Figure 4.5 b). A more memory efficient
solution is to load the textures overlapping. Figure 4.6 shows the principle
in 2D. The texture is only sliced, or better sampled, to the centre of the

Figure 4.6: Overlapping textures

58

4.2. Coherency 59

outer voxels as can be seen in Figure 4.6. The slicing border of the two
bricks is shown as dotted lines. Only the slices for one brick are displayed.
As can be seen from Figure 4.6, the two bricks have the same border, or an
overlapping texture. To avoid artifacts, the next texture has to be shifted
by one voxel size towards the origin. The nth texture is moved by n − 1
voxels towards the origin.
If multiresolution and Level-of-Detail are used, the bricking algorithm in-
troduces artifacts at the brick boundary. If simple averaging is used to
determine the next lower resolution, then in the next resolution level, the
bricks do not correctly overlap because inner points were included to com-
pute the next resolution level. Figures 4.7 a) and b) clarifies the problem.
Additionaly, as can be seen in Figure 4.7 b) the sample position of the lower
resolution volume is shifted towards the brick centre. To avoid these arti-
facts, one could include more boundary voxels which would require more
texture memory and would not result in an smaller texture. Hence LoD
would be useless. One goal in the design of this rendering method was to
focus on speed to handle huge data sets at interactive rates. Although good
image quality is another goal, some compromises had to be made towards
the perfect solution. The correct sampling position for the lower resolution
bricks is used and the texture is rendered with the GL CLAMP command
that continues the signal which is at the border to infinity. The described

a) b)

Figure 4.7: Multiresolution bricking - a) full
resolution, b) half resolution

methods work well for regular grids and can directly be applied to BCC
grids. The only difference is a modified lattice topology. One could either
work with both CC cubes or just with one and treat the second one similar
to the first one. For the rendering both CC cubes can be rendered separately
using two texture units and then blended together using register combiners.
The next section discuss how the data set can be efficiently subdivided by
using spatial coherency to compute the importance of particular regions in
the data.

59

60 Chapter 4. Realtime Visualization

4.2.2 Spatial Coherency

Most data sets do not only consist of interesting regions. There are usually
some parts within the volume in which one is not interested in or which
even disturb in the visualization. Medical data sets for instance sometimes
contain areas with only air, noise or artifacts which are due to the reconstruc-
tion. Figure 4.8 shows the engine data set volume rendered using texture
mapping hardware with diffuse shading and orthographic projection. One
can clearly see the reconstruction artifacts due to the CT acquisition. These
parts of the data are not only unpleasant, they also hinder in the process of
gathering information from behind because this noise hides the real interest-
ing data. Of course, one could use transfer functions to suppress the noise
and simply blend it off. The disadvantage of this technique is that other
structures in the data set with similar qualities (gray tone) are blended off
as well. A more efficient solution would be to simply exclude the noise from
rendering. This way one can increase the rendering speed twice, due to data
that now does not need to be transferred to the graphics card and does not
need to be rendered. Currently there are no techniques which automatically

Figure 4.8: Empty regions around the engine
data set

segment the data in a pre-processing step and use only interesting parts for
the final rendering. The advantage of segmentation is that on one hand
unnecessary data can be removed and on the other hand the rest of the data
is analyzed and rendered with a unique Level-of-Detail suitable to represent
the information of this brick. If the entire data set fits into the texture
memory, then this method does not need to be used. Here, all data can
simply be loaded in the texture memory once and then used for rendering.
What one still might want do is to segment the data before loading it as

60

4.2. Coherency 61

texture to remove the noise by zero padding these areas in a pre-processing
step which only contain noise, air or reconstruction artifacts.
To combine texture based volume rendering with a multiresolution approach,
usually an octree structure is used which sets the highest LoD for bricks
close to the camera and the lowest LoD to bricks which are farthest away
[BNS]. The Time-Space-Partitioning Tree (TSP) introduced by Shen et.al.
[SCM99] [ECS00] also uses some spatial and temporal coherency to decide
which LoD to use. But this algorithm is also based one an octree structure.
Figure 4.9 shows an example [ECS00]. The goal for the new bricking algo-

Figure 4.9: Octree structure in volume
rendering

rithm was to remove unimportant data, and to merge the remaining parts
into bigger bricks, which, of course, have to be small enough to fit in the
available texture memory. The algorithm merges smaller bricks with similar
importance together to reduce the number of texture loads and to effec-
tively use Level-Of-Detail. The complete bricking algorithm can be roughly
divided into three steps:

• split data set into small cubes (≈ 163),

• compute importance for each cube,

• merge similar cubes together into homogenous bricks.

The first step simply homogenously divides the data into many small cubes
of sizes between 43 and eventually 1283. This size can be controlled by a pa-
rameter and depends on the size of the actual volume. All cubes are created
with overlapping borders because this is a requirement for the rendering
(Section 4.2.1).
After this step is done, for all cubes the importance is computed. For static
data sets, a gaussian smoothed version of the data set is used to compute
the importance. For time-varying data, some of the time-frames are accu-
mulated together which results on one hand in a smoothed volume and on
the other hand in a volume that represents most of the time features. This

61

62 Chapter 4. Realtime Visualization

smoothing is important to not highlight noise in the data which one actu-
ally wants to remove. The importance is computed by looking at several
qualities of the data set, like the mean value, the contrast, the maxima and
minima as well as the entropy:

mean = ḡ = 1
L·M ·N

∑
l,m,n f(l,m, n),

contrast = q = 1
L·M ·N

∑
l,m,n(f(l,m, n)− ḡ)2,

entropy = H(p) =
∑

g∈G
¯
p(g) log2 (1

p(g))

with p(g) = h(g)
L·M ·N .

(4.23)

Here L, M and N are the dimensions of the brick and f(l,m, n) is the
density value of the volume at position l,m, n.. The entropy is computed by
using the relative frequency p(g) of the gray tone g. One application for the
entropy is image processing where it is used to determine the information
content of a certain region. The importance is then computed as:

importancei = mean ∗ contrast ∗ entropy, (4.24)

and scaled between zero and one. For time-varying data, also the local im-
portance, the importance for each time step is computed and is used as an
error metric for temporal coherency.
All this information is used to decide if the current sub-brick contains im-
portant information which needs to be rendered or not. If this information
will be used for the rendering, then the importance is also used to determine
the resolution/compression level for this brick. If the importance, contrast
and mean are below a certain threshold then this sub-brick is not used for
rendering. Otherwise all other sub-bricks are merged together to form larger
textures, to reduce the amount of texture loads. The merging procedure can
be seen in Figure 4.10. Here the double hatched areas are the already merged
bricks, and the single hatched areas are examined for merging. The merging
step starts at one corner of the volume ((x0, y0, z0) and decides if the current
brick can be merged with the neighbouring one on the x axis ((x1, y0, z0)),
Figure 4.10 a). If so, then the algorithm tries to merge the next two bricks
on the y axis ((x0, y1, z0) and (x1, y1, z0)), Figure 4.10 b). If this succeeds
as well then the z axis is analyzed and the next four bricks are merged if
possible ((x0, y0, z1), (x1, y0, z1)), ((x0, y1, z1) and (x1, y1, z1)), Figure 4.10
c). This continues until the maximum texture size is reached or if no more
bricks can be merged together. As can be easily seen, this algorithm allows
one to create uniform as well as non-uniform bricks. All textures have to be
of size 2n. E.g. if the volume is divided into cubes of the size of 83, then the
next bigger uniform brick would be of size 153. The smaller texture is due
to the overlapping textures. Now, to merge the next level, two additional
sub-bricks have to be merged in all directions to yield a 293 texture. One

62

4.2. Coherency 63

problem with this merging is that the textures are not 2n anymore, because
they are initially defined with an overlapping border. To solve this problem,
the remaining space in the texture can be filled with zeros which allow a
nearly 100% compression, but they have to be transferred to the graphics
card. In order to render correctly, the texture coordinates as well as the
clipping planes have to be adjusted. One problem that might occur is that

a) b) c)

Figure 4.10: Merging textures

a cube will be classified as unimportant, even though the border or just a
few voxels belong to an edge of an interesting object. The absence of these
voxels in the visualization might be noticeable. In order to improve the al-
gorithm, voxels at the border are weighted higher than those in the middle.
Also the importance information from neighbouring sub-bricks can be taken
into account. Because the textures overlap at the brick border, all border
voxels are still rendered, even if the brick is classified as not interesting.
This pre-segmentation has lots of room for improvement. One is the question
on how to efficiently subdivide the volume and how to differentiate between
important and unimportant. A better feature extraction might use wavelet
filters as is described by Machiraju et.al [GMR97]. Also the merging step
could be improved as the one which is described here does not globally an-
alyze the data set and only merges in one direction.
As with the bricking, the subdivision can directly be applied to BCC grids.
One only has to change some weights when filtering the data set and com-
puting the importance for each brick.

4.2.3 Temporal Coherency

The bricking process from the previous section also includes the temporal
information to create bricks that are also uniform in time. The temporal
information is used in addition to determine the temporal behaviour of a
brick or a data set in time. An example would be the movement of gray
tones or other changes in the data set. This temporal behaviour can be used
for the update procedure to decide if a given texture needs to be changed or
is still valid by a given ε to describe the information contained in the volume
at this point in time. For instance if the information content of a brick does

63

64 Chapter 4. Realtime Visualization

not, or just slightly, change from one frame to another, the texture does not
need to be updated and hence some update time is saved which results in a
faster response of the visualization.
Therefore in a pre-processing step for each brick that will actually be in-
cluded in the rendering, the local (time) importance is computed and stored
in an error matrix. Some thresholds are used to decide if the current texture
can also be used to represent the signal of the next time frame. Then only
those bricks are updated which textures have to be changed.

4.3 Multiresolution and Compression

Once the data is decomposed into bricks using spatial and temporal co-
herency it can be further compressed by using wavelets. The wavelet de-
composition catches two birds with one stone. One is the compression that
allows to store the data in a more efficient way and the other is that at the
same time a multiresolution version of the data set is constructed. Mul-
tiresolution and a specific Level-of-Detail for each brick allow to gradually
switch between two foci for the rendering: image quality or the speed of
interaction.
As described in the previous section, the entire data set is subdivided into
small bricks. Each of these bricks has its own unique importance which tells
how much the contained information will contribute to the overall image. If
possible, neighbouring bricks are merged together to build bigger textures
to keep the total amount of bricks small. These bricks are either in the BCC
lattice, if only one single time frame is available, or in the D∗

4 lattice if the
data set is dynamic and varies over time. These bricks are now compressed
using either wavelets for cubic grids, or wavelets for hexagonal grids.
If the data set is sampled into the regular cubic lattice then each volume,
for static data sets only one, is compressed and stored using 3D wavelets for
cubic lattices. This way, only the current frame is uncompressed in memory
and used for rendering. All other time frames are efficiently encoded and
remain either in main memory or on hard disk. Which wavelet is finally
used is not important for this technique, but very important for the image
quality and the resulting compression ratio. In order to be able to use loss-
less compression, the lifting scheme, see also Chapter 2.3.3, has to be used
which also allows to compress in the integer domain.
For static BCC data, the bricks are compressed using hexagonal wavelets for
the BCC lattice. If the volume is dynamic then 3D wavelets for cubic grids
are used because the D∗

4 lattice can be decomposed into
√

2t 3D cubic grids.
These volumes can be independently compressed and stored as each of them
represents a different time frame. If a BCC volume needs to be extracted,
either two or three of these volumes need to be decompressed and the BCC
grid will be interpolated as described in the Sections 4.1.3 and 4.1.4.

64

4.3. Multiresolution and Compression 65

Using either lattice and/or wavelets, the wavelet decomposition can be per-
formed in a way that high frequencies (details) can be discarded using a user
specified threshold. This threshold can be set from numerically lossless to
visually lossless and for best compression ratios also to lossy compression.
The data is stored in different arrays dependent on high or low frequencies.
The low frequency volume might be further decomposed to a certain level,
while the high frequency volume is stored using a bitstream method like
Huffman Coding or Run-Length-Encoding [Sal98]. For this application the
RLE algorithm was chosen because of its high speed and good compression
ratios for detail information. The final low frequency volume will not be
compressed because the compression ratios would not be as good as for the
high frequency volumes. Another advantage is that when switching to a new
time frame, a low resolution version of the volume can be rendered immedi-
ately without the need of decoding it first.
The use of wavelets to compress volumetric data sets is not new, but not
heavily explored for volume rendering. First results were described in [PSM02]
and more recently with better results in [IP02] and in [GWGS02]. Wavelet
compressed data sets can also be rendered in the wavelet domain. This
technique is similar to Fourier based volume rendering and also suffers from
the same problems, like depth cueing and occlusion. But it can also be used
together with other techniques like ray-casting or splatting [GDH97].
In the following sections, first the used wavelet method for the cubic lattice is
discussed followed by the BCC lattice. After this the Run-Length-Encoding
algorithm is explained and it is shown how the volumes are stored and or-
ganized.

4.3.1 Wavelets for Cubic Grids

Wavelets were already discussed in detail in Chapter 3.3. The goal of this
and the following section is to highlight specific problems for the decomposi-
tion of volumetric data sets. This section discusses in detail volumes which
are sampled in Cartesian space, while the next section covers the volumes
which are sampled on the BCC lattice. Time-varying data sets which are
resampled to the D∗

4 lattice are also decomposed using regular Cartesian
wavelets, because the single volumes for each time frame are sampled into
Cartesian space. See Section 4.1.2 in this Chapter for more details.
Data sets which consist of more than one volume are decomposed separately
frame by frame. Thus, only 3D volumes need to be considered. In Cartesian
space, one has three axes of symmetry. As discussed in the introductory
section in Chapter 3 data sets which are two- or higher-dimensional can
be decomposed in two ways, using either separable or non-separable filters.
Linear separable filters which are easier to use, but can introduce some
directional artifacts, because the data set is decomposed in a pre defined

65

66 Chapter 4. Realtime Visualization

direction. Here, non-separable filters which up- and down-sample all axes
simultaneously yield better results. But these filters are more complex to
use and computationally more expensive.
Another important quality are the used wavelet decomposition method and
the filter used. In order to guarantee the possibility of real lossless compres-
sion, the integer wavelet decomposition using the lifting scheme was chosen
for this implementation. The filters used are the simple Haar wavelet as
well as several variations of the Cohen-Daubechies-Feauveau wavelet filters
[CDF92] which shall be discussed here briefly. For the final implementation,
the Waili package [UVWJ+98] was used.
The integer wavelet transform (IWT) is a particular wavelet transform that
maps integers to integers in order to obtain a lossless decomposition. The
theory of IWT was developed after Cohen, Daubechies and Feauveau in-
troduced the bi-orthogonal basis for perfect reconstruction filters [CDF92].
Bi-orthogonal basis functions are an alternative to orthogonal basis for de-
composition. By removing the orthogonality constraint, they give flexibility
to design filters that can be used for integer wavelet transform.
Bi-orthogonal wavelets are a family of wavelets that are obtained when the
dilation equation is applied on two different scaling functions. This results
in two sets of basis functions Φn and Φ̃n which are bi-orthogonal. Therefore
one can decompose/reconstruct a signal as:

f =
∑

< f, Φn > Φ̃n (4.25)

The derivation of wavelet basis are similar. The integer transform is taken
from the fact that using the appropriate bi-orthogonal filters, one can round
the coefficients after the analysis step, but still can reconstruct the original
signal by reverting the operations in the synthesis step.
In addition to Haar wavelets, also CDF filters with higher vanishing mo-
ments were used. CDF filters are the optimal bi-orthogonal wavelet filters
in terms of number of vanishing moments. The vanishing moments corre-
spond to smoothness of the filter response in frequency domain, or in other
words, if the wavelet has p vanishing moments, the low pass filter and its
p− 1 derivations aere zero at ω = π. The higher the vanishing moment are,
the higher is the quality of the filtered images.
However, by increasing the number of vanishing moments, the spatial sup-
port of the filters increases. This means that singularities in the signal affect
a larger number of coefficients. The image quality rises, but the compression
ratio drops down. Comparisons and image examples can be seen in Chapter
6. If p, p̃ correspond to vanishing moments of the primal and dual wavelets,
the CDF proved that any bi-orthogonal wavelet has a support of at least
p+ p̃− 1. CDF wavelets achieve this lowest support and are therefore opti-
mal in the tradeoff of quality and compression. In conclusion, they are the
best choice for the wavelet compression in the chosen approach.

66

4.3. Multiresolution and Compression 67

The wavelet decomposition depth and the used compression ratio are dif-
ferent for each brick and depend on the brick dimensions as well as the
importance of this brick, Section 4.2. After the volume is decomposed and
the detail coefficients are thresholded the last low resolution volume is stored
uncompressed on the disk and all high frequency data is encoded using RLE,
section 4.3.3.

4.3.2 Wavelets for BCC Grids

While the last section explained the decomposition of wavelets for the Carte-
sian data sets, this section explains what problems can occur when creating
a multiresolution representation of a volumetric data set that is sampled
onto the BCC lattice. These hexagonal wavelets are only needed for 3D
BCC data sets. Time-varying hexagonal data sets are sampled to the D∗

4

lattice which single time frames are sampled to Cartesian space. The BCC
lattice has, in contrast to the 3D CC lattice, nine axes of symmetry. This
makes it more difficult for the use of linear separable filters, as one has to
chose three out of nine axes. Because of these preferred axes, one would
introduce directional artifacts in the up- and downsampled versions of the
data set. The possibilities for filtering BCC data sets are:

• linear separable filters on three chosen directions,

• linear separable filters applied independently on each CC volume,

• linear separable filters for the entire BCC volume,

• butterfly interpolation scheme for 3D BCC, or

• the use of non-separable filters.

The easiest solution would be to use linear separable filters and perform
either of the first three methods. Then simply Cartesian wavelets can be
used with a different indexing scheme. However, one would introduce some
artifacts, due to the different sampling density on selected axes. The most
artifacts will occur when three axes are arbitrarily chosen for the up- and
down-sampling. Better results can be achieved when the two CC volumes
are treated independently and standard wavelet filters are used for the three
axes. The disadvantage here is that the direct neighbouring points can not
be used as they are sampled into the second cube. Here the most simple
approach would be to treat the BCC lattice as one CC lattice. Every odd
row is shifted by 1

2 in x and y and one also uses a denser sampling in the z
direction. If either of the linear separable filters is used, all wavelet filters
from the Cartesian space can directly be applied to BCC data sets.
For the implementation the third approach was chosen because it allowed
the use of existing wavelet filters which were discussed in the previous sec-
tion.
For better image quality non separable filters or a butterfly interpolation

67

68 Chapter 4. Realtime Visualization

scheme can be used. The butterfly interpolation [DL90] is used to avoid di-
rectional artifacts by still using linear separable wavelet filters. Here one uses
several axes for the interpolation to avoid artifacts in the lower or higher
resolution data set. Hexagonal wavelets are used in medical imaging for
image processing on 2-dimensional images [Per96] [SL98]. Here the but-
terfly scheme is used in two dimensions to avoid artifacts due to a preferred
direction.

4.3.3 Encoding and Storage

Once the bricks are decomposed into high and low frequencies, most of the
resulting data can be encoded in a more efficient way. The wavelet decom-
position is only performed two or four levels deep, depending on the original
brick size. The last low frequency volume is not encoded and directly saved
to the disk. All detail information which is needed to reconstruct the orig-
inal resolution is thresholded to achieve a better compression ratio. Then
these high frequency volumes are encoded using the run length encoding
mechanism and saved to the disk. The used RLE algorithm is the same
one as described in Chapter 3.3.1. In the current implementation only one
direction is used for encoding. As a 3D volume could be traversed in three
possible directions, an eventually better path for encoding could be found
and stored with two additional bits.
If the data is loaded, either from the beginning or from selecting a new time
frame, the lowest resolution volume, which was not compressed, is read in
and directly used as texture to achieve a fast response time. The texture is
first loaded as simple density texture without normal information. If shading
is desired and the normals are not pre-computed, then they are computed in
a different thread with lower importance than the rendering thread. Also the
next texture resolution is computed using an independent thread. Once the
computation of the gradients and the next texture resolution is completed,
the texture is updated and the two threads are terminated. Then the next
texture/gradient level is reconstructed until the required Level-of-Detail is
reached.
If the normals were computed in pre-processing, then they are downsampled
to the current texture size and loaded as RGBA texture where the RGB val-
ues represent the gradient in x, y and z.
All the detail coefficients from one resolution level can be encoded into one
file. The last low resolution volume is not encoded for faster access. De-
pending on the number of wavelet levels a brick is decomposed to, there
are n + 1 files to store per brick and per time frame. This can result in a
huge number of files, depending on the data set size, the resolution, and the
number of time frames needed, but this is necessary to guarantee that each
brick has access to its data immediately. Because the algorithm accesses

68

4.4. Volume Visualization using Texture Mapping 69

only at one point a data file, a better solution can be used where all data,
high and low frequency is stored in one file and accessed via data pointers.
This would result in one file per brick and time step.
Also, one additional header file is stored for the entire volume which contains
all the information that is needed to initialize the bricks and to setup the
rendering properties. In the initialization step, for each brick the smallest
resolution level, i.e. the low resolution volume of the last wavelet decompo-
sition, is loaded and rendered. Then the update mechanism, as described
earlier in this section, starts until the required resolution level for all bricks
is reached.
To keep the entire data set reconstructed in main memory can require a
lot of space and might not be feasible on smaller systems. An alternative
would be to reconstruct each brick before rendering. This would increase
the rendering time, but one would be able to use this method also on smaller
computers with less main memory. One of the largest data sets for the visi-
ble human male (1700× 950× 1877) requires 3 GB of space for the density
data alone. If shading is needed, then this data set would require uncom-
pressed roughly 12 GB for the maximum resolution. Using the BCC lattice
one would only have to store 8.5 or 2.1 GB of data which is still too much
for most computer systems. Smart subdivision and different resolutions for
certain parts will also decrease the memory costs, but this might still be
too big for most workstations. Here a compromise would be to only store
the second resolution level in main memory and then reconstruct the higher
resolution on the fly if necessary.
If the data set is dynamic, i.e. several volumes exist over time, then before
the new texture is loaded and reconstructed the difference between the two
time frames is analyzed using a previously computed error metric, Section
4.2.3. If both time frames vary only in minor differences, the old texture
might be kept and further used. Only if the differences are noticeable, the
old texture is discarded and the new texture is reconstructed.

4.4 Volume Visualization using Texture Mapping

The final step in the visualization pipeline is the rendering of the volume data
onto the screen. Besides the many techniques available, volume rendering is
still a challenging field, especially when dealing with huge time-varying data
sets. As described in Chapter 3.1., some methods are software based and
some are accelerated through special hardware. The software techniques are
usually more accurate, but slower then the hardware accelerated methods.
The most fundamental operation in volume rendering is the sampling of
the volumetric data set to evaluate the volume rendering integral, Equation
4.26.
The data which is already sampled on a discrete grid, either regular CC

69

70 Chapter 4. Realtime Visualization

or hexagonal BCC, needs to be re-sampled onto another discrete grid, de-
pending on the viewing direction. These resampling locations as well as
the interpolation kernel have to be chosen carefully in order to achieve high
quality images.
All direct volume rendering algorithms evaluate or approximate the volume
rendering integral:

C =
∫ D

0
c(s(~x(t)))e−

∫ t
0 τ(s(~x(t′)))dt′dt (4.26)

In this equation C is the colour for a pixel which shoots the ray ~x into the
volume and which is integrated along

∫ D
0 . Here D is the farthest point that

will be sampled by this ray. The colour at a certain position is determined
by using the current colour at the current place c(s(~x(t))) which is inte-
grated by the absorbtion term to the position of emission e−

∫ t
0 τ(s(~x(t′)))dt′ .

Ray casting, as described in Chapter 3.3 is a software implementation that
simply evaluates this integral and traverses the volume from front to back.
While ray casting is software based and not available for interactive ex-
ploration of huge data sets, a hardware based solution was chosen for this
implementation. Alpha blending, which is used for texture accelerated vol-
ume rendering, approximates the volume rendering integral for all rendered
slices:

C
′
i = Ci + (1−Ai)C

′
i+1. (4.27)

Alpha blending is performed from back to front and a new colour C
′
i is

computed by using the colour from the previous slice C
′
i+1 and multiplying

it by the current alpha value Ai and adding the current voxel colour Ci.
Hence the blending function which is used for compositing can be described
as (GL ONE, GL ONE MINUS SRC ALPHA). See also Chapter 7.3 for a more
thorough discussion of the actual implementation.
In volume rendering using texture mapping hardware the volume data is first
loaded into the texture memory. Slicing planes are successively arranged
through the volume on which the volume data, i.e. the texture, is sampled.
These slices are rendered from back to front and composed through alpha
blending [CCF94].
Two major algorithms exist for volume rendering using texture mapping
hardware. One uses three stacks of 2D textures and six predefined sets of
slices, Figure 4.11, the other one uses 3D textures and view aligned slices,
Figure 4.12. When using the 2D textures, only the stack which is most
perpendicular to the viewing direction is used, and is switched when the
angle between the camera and normal of the slices exceeds 45◦. Figure
4.11 [HKERS02] demonstrates the principle when using 2D textures: The
disadvantage for 2D textures is that one needs three times as much data
because three copies of the texture are needed for either (x, y), (x, z) or
(y, z) slicing planes. Artifacts are introduced due to slices that are not

70

4.4. Volume Visualization using Texture Mapping 71

Figure 4.11: Volume rendering with 2D
textures

aligned with the viewport. These artifacts are most visible when the angle
between the slices and the viewport is greatest. Also popping artifacts occur
when switching from one set of textures to the next one. However, the big
advantage is that 2D textures are available on all 3D graphics cards in
today’s computers.
The next step for volume rendering using graphics hardware is the use of
3D textures. When using 3D textures, the slices can be laid arbitrary in the
volume and hence be always parallel to the viewport. This approach mimics
the ray-casting algorithm when alpha blending is used. The hardware can
perform tri-linear interpolation within the volume for each location where
the volume is resampled. Figure 4.12 [HKERS02] demonstrates the use
of 3D textures in volume rendering: The volume rendering pipeline starts

Figure 4.12: Volume rendering with 3D
textures

with loading the data into the texture memory. If shading is needed, the
gradient for each voxel is stored in the Red, Green and Blue component of
the texture. With the intensity stored in the Alpha component, the final
texture is defined as:

Tex3D = (Nx, Ny, Nz, I) (4.28)

Now, this texture is loaded into the texture memory and resampled where
the slicing planes cut through the data. Depending on the classification
used the gradient as well as the intensity are used to determine the colour
and the opacity. Various methods can be used which classify the data using
the given transfer functions. Shading techniques can be applied to further
enhance the visualization. A more detailed discussion on this topic can be

71

72 Chapter 4. Realtime Visualization

found in Section 4.4.6.
Other blending functions allow to simulate different rendering techniques.
The most common one as described earlier in this Section is alpha blend-
ing. Different blending equations can be chosen to simulate x-ray images or
the maximum-intensity projection technique. The alpha test can be used to
simulate non-polygonal iso-surfaces.
To interact with the data, i.e. rotate, zoom or translate, the texture matrix
stack is used. Every texture unit has its own matrix which can be used to
apply matrix transformations like rotation. Before the texture is resampled,
the texture is re-oriented and then sliced parallel to the viewing plane. The
advantage of this method is that the position of the sample slices does not
change and that they can be reused for every frame if the sampling distance
remains the same. The texture unit either repeats or clamps the texture at
its border. In order to have only one copy of the volume, clipping planes
have to be used to clip off the ghosts.
To reduce the texture size, the S3TC compression algorithm which is sup-
ported in hardware can be used [Bro00]. The compression ratio is 4:1
for RGBα textures. Nevertheless, this compression technique is lossy and
the artifacts are visible, especially when storing gradient information in the
RGB channel. But this technique can be used in addition to LoD when high
frame rates are necessary, for instance when interacting with the data. This
compression can also be used to extend the limitations which are set by the
available texture memory. Now data sets up to a size of 5123 can be used
with gradient information without bricking.
When the bricking technique is used to render data sets which do not fit
into the available texture memory, neighbouring bricks have to be loaded
with overlapping textures. Because back to front compositing is used, all
bricks have to be sorted before rendering. More detailed information about
bricking can be found in Section 4.2.1.
Additional clipping with arbitrarily shaped clipping volumes can be easily
performed in hardware and is a valuable addition for the rendering algo-
rithm, see Chapter 5.3.5. The clipping can be either performed using a
clipping volume or on a per-fragment basis [WEE02].
While the interpolation is an important step in order to reconstruct the orig-
inal signal, tri-linear interpolation produces visible artifact. Even though
tri-linear interpolation works fine for most data sets, higher order interpo-
lation filters can be used, even in hardware to achieve better resampling
results and higher image quality. Hadwiger et.al. [HTHG01] implemented
a technique which allows to use arbitrary reconstruction kernel to resample
the volume.
A disadvantage for using 3D textures is that they still have a limited avail-
ability, even though there are becoming available on more consumer graphics
hardware from nvidia [nvi01] and ATI [ATi01]. But sooner or later 3D tex-
tures will be available on most graphics workstations. Reasons for choosing

72

4.4. Volume Visualization using Texture Mapping 73

3D textures for the volume rendering task were their increasing availability
as well as the good image quality and the high performance rendering.
The following sections are dedicated to different parts of the rendering
pipeline in more detail. It starts with a description on how to slice BCC
data sets and which changes had to be applied to the original algorithm.
Section 4.1.2 explains in theory how visibility determination can be utilized
to speed up the rendering of huge data sets. The next sections describe how
Level-Of-Detail is used and how the visualization of time-varying data can
be performed as well as how non-polygonal iso-surfaces are extracted and vi-
sualized. Then classification and shading, most important for every volume
rendering technique, are discussed and at last, an overview and comparison
of different proxy geometries is given in order to render perspective images.

4.4.1 Slicing BCC Grids

Unfortunately current OpenGL implementations do not yet support the
BCC lattice in hardware. This might change in the future when the game
industry realizes the usefulness of the BCC lattice. The implementation
should not be difficult as it would be just a matter of indexing which could
be as easy as simply linking two cubic textures together. The advantage of
the BCC grid in computer graphic is not only that it allows to store the
information more efficiently, but also fewer operations have to be performed
because fewer samples are used. This additionally decreases the processing
time while still having the same image quality.
The BCC grid which is either given by itself or which originates by slicing a
D∗

4 data set can be understood as two interleaving CC grids which are offset
by 1

2 in x, y and z. Hence the easiest way to render BCC grids using current
texture mapping hardware is to use multitexturing and two texture units for
the two CC data sets. Figure 4.13 explains the principle. Here the BCC grid
is decomposed into two regular cubic grids and for each data set one texture
unit with its own texture matrix stack is used. Each texture is then loaded
into either texture unit one or texture unit two. The outer cube is sliced in
the same way as it was described for regular Cartesian grids in the beginning
of this Chapter. The second cube is translated in texture space by 1

2 in all
three directions. For both texture units 3D textures are enabled and alpha
blending is activated. During rendering, or sampling, these two textures are
sliced and blended together on the same slicing plane using multitexturing
and register combiner.
One problem is that the textures are clipped in polygonal space, dotted lines
in Figure 4.13, using the six clipping planes OpenGL supplies. This works
very well for the one texture that is aligned with these slicing planes. The
other texture, that basically builds the inner cell points, Figure ??, can not
be sliced properly and interpolation artifacts will occur. If both textures

73

74 Chapter 4. Realtime Visualization

Texture Unit I

Texture Unit II

Figure 4.13: Volume rendering of a BCC lattice

are of the same size, then the samples on three sides of the inner texture
are not used, but they are used for interpolation. Because there are not
enough samples on the other side, the texture must be clamped to reduce
the artifacts to a minimum. These artifacts have a constant texture space
length which is 1

2 a voxel in size. The other problem is that when resampling

Figure 4.14: Comparison CC lattice a), and
BCC lattice b)

the volume and interpolating on arbitrary slices, not all neighbours can be
considered for the interpolation, because they are loaded into the other tex-
ture unit. But both will be sampled on the same slice and blended together.
Each texture unit performs tri-linear interpolation for each of the cubic data
sets. The forth linear interpolation is performed in the blending step when
the two textures are blended together.
Figure 4.14 shows a comparison of the engine data set rendered on the CC

74

4.4. Volume Visualization using Texture Mapping 75

lattice 4.14 a) and on the BCC lattice 4.14 b).
Another drawback is that when using this approach, already two out of four
available texture units are spend. This makes it more challenging for find-
ing methods for good classification and shading within one single rendering
pass. Sections 4.4.4 discusses this topic in more detail.

4.4.2 Visibility Determination

Even though hardware accelerated volume rendering is a very fast tech-
nique, the major bottleneck is the size of the available texture memory and
the transfer of the texture to the graphics hardware. The bricking method
allows one to render volumes that do not entirely fit into the texture memory.
The price is that this technique uses several rendering passes, one for each
brick. The most time is spent by transferring the data from main memory
to the texture memory as well as for resampling and blending. The more
slices, the more expensive. Hence the goal is to reduce the amount of data
that has to be sent over the bus and also to decrease the number of texture
loads to reduce the number of rendering passes needed to render the data
set. These goals are partially fulfilled by the used bricking algorithm, see
section 4.2, which segments the data set before rendering and merges similar
bricks together. Additionally this bricking algorithm assigns a unique LoD
to each brick which allows the use of a smaller texture and fewer slices.
The rendering time could be further decreased by adapting some techniques
of visibility determination which are used in other volume rendering algo-
rithms. In ray casting for instance the data is sampled from front to back
by casting a ray through the volume. Here the colour and opacity values
are accumulated to determine the final pixel colour. The ray is usually only
traced until the opacity reaches a value around 0.95. The ray traversal can
be terminated at this point, because the missing voxels have a too small
influence to contribute to the final pixel colour.
A similar technique could be used for volume rendering using texture map-
ping hardware. While visibility determination is not needed for small data
sets where only one or a few bricks are used. As described in Section 4.2.1,
the main bottleneck of the bricking algorithm is the transfer of the volume
data to the texture memory. For huge volumes, like the visible human data
set, a visibility determination for each brick prior the rendering would be
very useful to decrease the rendering time. Even if only a few bricks do
not need to be rendered, the increase in rendering performance would be
noticeable.
For a simple visibility determination, first the bricks can be clipped against
the viewing frustum. Only bricks which are at least partially in the viewing
volume are further considered, all others are discarded. Next a low reso-
lution version of the entire volume which remains in the texture memory

75

76 Chapter 4. Realtime Visualization

for the whole time is rendered in the back buffer. Now the depth and the
alpha image from this volume are read back into main memory to be further
processed using image processing techniques. While this is a very expensive
task, maybe other ways can be found to perform everything in hardware
or to only partially need to transfer these buffers back to main memory.
The alpha image is analyzed to see if there is any value above 0.95. If so,
then the minimal depth value for this opaque region is determined from
the z-buffer. All remaining bricks are sorted and those who are closer then
this minimal depth are not further processed, but classified as need to be
rendered. All other bricks which are possibly behind an opaque region are
further examined to check if they need to be rendered or not. This could be
done projecting the shape of the brick onto the viewing plane to check what
pixels it covers and to decide if this brick need to be rendered or not. Only
the shape of the brick has to be projected, not the actual data. After all
bricks are checked for their visibility, the remaining bricks are re-ordered,
not sorted, as the order of rendering did not change, and then rendered from
back to front as usual.
This technique could help to increase the rendering performance for huge
data sets where the opacity transfer function allows opaque regions. If the
opacity can not be higher than 0.95 then the second part of this method can
be skipped, but the clipping against the viewing volume is always advanta-
geous.

4.4.3 Level of Detail

Level of Detail is very important for rendering huge data sets at interac-
tive rates. When rendering huge volumes using the bricking technique, then
every frame each brick texture needs to be loaded from main memory into
the texture memory. Even though the AGP bus is very fast, it is still too
slow for transferring that many textures several times a second over the bus.
Depending on the system bus speed, the peak for transferring data to the
graphics card with AGP4x is roughly 1 GB per second. But this is just a
theoretical value and impractical because the CPU, the memory and other
system components interfere which reduces the bus speed.
Therefore one goal is to minimize the texture loads and the total amount of
data that needs to be transferred to the graphics card. One point to achieve
this is by pre-processing the data and checking for relevant data, see also
Section 4.3. Most data sets can be reduced in size when using this method.
It is important to not only reduce the amount of texture memory that is
needed, but also to group textures with similar information together into
larger bricks to reduce the number of texture loads.
Texture compression, like the S3TC [Bro00] algorithm which is supported
in hardware can be used prior sending the data to texture memory to de-

76

4.4. Volume Visualization using Texture Mapping 77

crease the texture size in main and texture memory and the time it takes
to transfer the texture to the graphics card. With the S3TC compression
enabled, textures which originally do not fit in the texture memory because
of their size might fit now and bricking is not necessary anymore. However,
because this compression is not lossless, the image quality will degrade. The
compression ratio is 4:1 for RGBα textures.
All these techniques are related to LoD, they can help to increase the overall
performance of the rendering. Level-of-Detail means that during rendering
it is checked how much a particular brick contributes to the image. Level-
of-Detail can be used in two situations. First, bricks which are far away in
the back of the data set and have a pixel to voxel ratio smaller than 0.5
can be rendered with a lower texture resolution. Also bricks which entirely
represent a more homogenous region can be rendered with a lower texture
resolution and less slices. This way the image quality might decrease slightly,
but the performance increases. At each frame the necessary Level-of-Detail
is recomputed for every brick. One factor for the LoD determination is the
distance from the camera, the other factor is derived from the information
which is actually stored in the brick. This importance information is pre-
computed for each brick (Section 4.2).
When a different level of detail is used, i.e. a texture with only a quarter
resolution, then only half the slices are necessary to resample this data. Usu-
ally the number of slices which are needed to resample the signal is directly
taken from the dimension of the data set, i.e. a 2563 volume is sampled
with 256 slices. The next lower resolution would be 1283 and here one only
needs 128 slices to sample the signal. Sometimes the data is oversampled
and intermediate slices are used to increase the image quality. If the same
opacity transfer function is used for the smaller resolution texture, then this
transfer function has to be adjusted. The opacity when blending 128 slices
have to be the same as with 256 slices. Also when different LoDs are used
between neighbouring bricks, opacity artifacts can occur because of over-
lapping slices. Figures 4.15 a) and b) show the two possible cases that can
occur. Figure 4.15 a) shows the case where a lower resolution volume is
viewed through a higher resolution volume. The area which is marked is
rendered with too much opacity. Figure 4.15 b) shows the opposite case.
Here the marked area is too transparent. A solution to this problem was
found by Weiler et.al. [WWH+]. Usually downsampled images or volumes
look smoother compared to the original volume when they are viewed in the
same resolution as the original data set. This is due to the low-pass filter
which was applied to the original volume to built the next lower resolution
LLL volume. Because the human vision system is most sensitive to edges,
image processing which is either used in a pre-processing step, or with fu-
ture hardware in real-time can help to improve the image quality. Possible
techniques for edge enhancing are unsharp masking and anisotropic diffusion
[Loh98]. But these techniques have to be applied carefully in order to not

77

78 Chapter 4. Realtime Visualization

a) b)

Figure 4.15: Level-of-Detail artifacts

change the bias of the volume.
The multiresolution representation of the volume is computed by using
wavelets. The wavelet filters used are described in more detail in Sections
4.3.1 and 4.3.2.

4.4.4 Time-varying Volumes

Often volumetric data sets are only static and not varying over time. But
some data sets, like the fuel cell simulation, are animated and several vol-
umes exist. Section 5.4 and Section 5.6 in the next Chapter explain some
basic principles as well as some more advanced possibilities to visualize the
temporal component of such data sets. For this application the simple ap-
proach was chosen which allows use of a slider bar to change the current
time frame. For volume rendering using texture hardware, this means that
the current texture is discarded and a new one has to be loaded. Several
optimization techniques can be used which shall be discussed shortly.
If the data sets are resampled to the D∗

4 lattice, then t ·
√

2 CC time frames
are created. Each of these time frames is only 0.35 of the original size of
one time frame. This might vary because OpenGL requires the textures to
be 2n and sometimes these smaller volumes have to be padded with zeros.
Now, one could either visualize each of these time frames separately or re-
construct a BCC grid out of the three volumes neighbouring in time. See
Sections 4.1.3 and 4.1.4 for more details.
The bottleneck of hardware accelerated volume rendering is the transfer of
the volume data into the texture memory. For quickly browsing through the
single time frames, several optimization schemes can be used. One could
simply have a low resolution version of each frame resident in the texture
memory and when using the slider to move through time, the current vol-
ume is selected and displayed. If the user selects one time frame, then the
high resolution version is loaded from disk and setup for rendering. The
advantage is that this technique is highly interactive and allows a fast se-

78

4.4. Volume Visualization using Texture Mapping 79

lection of the volume data set in time. The disadvantage is that, depending
on the data dimensions, quite a lot of texture memory is used to keep all
the time frames in memory. Here, a better solution is to keep only a few
time frames on the hardware. When moving through time the neighbouring
volumes are blended together using multitexturing and register combiners.
These volumes are low resolution representations of the different time frames
and because for example only every 10th volume is used, one can save up
to 90 percent of the data, compared to the technique before. Because these
volumes are only used to specify a time frame, high resolution is not neces-
sary and additionally the S3TC hardware texture compression [Bro00] can
be used.

4.4.5 Iso-Surfaces

Besides direct volume rendering, another very important and often used
method to visualize volumetric data is to generate iso-surfaces and there-
fore analyze the different layers of the data. As described in Chapter 3.1,
iso-surfaces are usually computed by using the Marching Cubes algorithm
[LC87] which builds a polygonal data set. The amount of triangles gener-
ated by the Marching Cubes algorithm can be very high, especially for large
data sets. Also the computation of an iso-surface can be very time consum-
ing. Figure 4.16 compares a polygonal and a non-polygonal iso-surface of
the engine data set. While the iso-value of the non-polygonal iso-surface
can be changed in realtime, the standard Marching Cubes version still takes
considerably more time to extract the next one. The standard iso-surface

Figure 4.16: Polygonal, a), and non-polygonal
iso-surface from the engine data, b) and c), of iso

value 170

was generated and visualized using the Visualization Toolkit [SMLS98].
When texture mapping hardware is used for volume visualization, the Alpha
Test can be used to allow only fragments which are above a certain thresh-
old. This can be specified by setting the alpha test function to GL EQUAL

79

80 Chapter 4. Realtime Visualization

which allows only fragments that have a certain iso-value to pass and to be
rendered. These non-polygonal iso-surfaces can also be shaded. Blending
using the GL BLEND command has to be disabled in order to construct
real iso-surfaces. However, in some cases the image quality is better when
blending is enabled, Figure 4.16 b). The volume is still rendered from back
to front, but the slices are now composited through the alpha test. In order
to achieve satisfying images, the number of slices must be increased. Oth-
erwise artifacts due to undersampling will occur. If GL GEQUAL is used
instead of GL EQUAL for the depth test, the number of slices can be re-
duced considerably. Now all samples pass the depth test which are at or
above the iso-value.
If these non-polygonal iso-surfaces are rendered without illumination and
blending, the resulting image would just show the black silhouette of the
iso-surface. Whereas shading and illumination can add local detail through
normal vectors and show characteristics of the surface. The next section ex-
plains which techniques can be used for shading and classification for volume
rendering based on texture mapping hardware.

4.4.6 Classification and Shading

Classification is a very important step for volume rendering in order to
categorize the different regions in a data set. Here usually two different
transfer functions are applied to the data set, one for colour mapping and
another one to specify the opacity for each voxel, see also Chapter 3.2.
Classification is used to visually group regions which belong together or to
differentiate between diverse materials. Shading can be used to enhance the
3-dimensional impression of the visualization. We know shading from our
every-day experience and use it to recognize shape information and also to
conclude about material qualities of an object. Shading is well known from
polygonal modelling and uses the phong illumination model:

IPhong = IakaOa +
∑

i

[((N · Li)IikdOd) + ((R · V)nks)] (4.29)

The Phong illumination model can be split into three parts, the ambient,
the diffuse and the specular term. The diffuse and the specular term are
computed for every light source. In equation 4.29 ka, kd and ks are the
lighting coefficients for the ambient, the diffuse and the specular light. L is
the light vector, N the normal vector , R the reflection vector and V is the
view vector. Oa and Od are the ambient and the diffuse object colours.
Shading can be incorporated into volume rendering in a variety of ways. In
order to include shading, first the normal vector has to be computed for
each voxel. The normal can be computed either during pre-processing or on
the fly. The pre-processing is not recommended for huge data sets, because

80

4.4. Volume Visualization using Texture Mapping 81

this would increase the storage requirements by a factor of four. Several
different methods to compute the gradient information have been proposed
with different advantages in speed and accuracy. Because the gradient will be
computed on-the-fly, a simple and effective method is needed. The method
of central differences yields good results:

gx = f(x+∆x,y,z)−f(x−∆x,y,z)
2∆x

gy = f(x,y+∆y,z)−f(x,y−∆y,z)
2∆y

gz = f(x,y,z+∆z)−f(x,y,z−∆z)
2∆z .

(4.30)

Here ∆ usually is the size of one voxel. On the border of the volume the
gradient has to be computed using forward- or backward differencing or by
clamping the volume. While gradients have to be normalized before they
can be used, the gradient length can be used to initially setup the opacity
transfer function to create a gradient magnitude opacity transfer function
[Lev88]. To avoid artifacts due to noisy data sets, the volume has to be
smoothed prior to the gradient computation. Especially data sets from med-
ical reconstructions are sometimes very noisy.
If the data set is too big to be kept in main memory for the whole time, the
gradients can be computed for the next lower resolution volume and if the
highest resolution is needed they can be simply upsampled using a linear
interpolation technique. However, this would result in artifacts, because the
interpolated gradient length would not be 1.0. Depending on the shading
technique used this artifact will also occur from interpolation when resam-
pling the volume. The gradients can also be compressed using wavelets and
decompressed on-the-fly, depending on the needed resolution level, if the
normals are computed in pre-processing.
Fake phong shading can be used on systems with very small texture mem-
ory where shading is needed. Here the gradients are pre-computed using
Equation 4.30 and then quantized to a set of N predefined gradient vectors
which are stored in a lookup table and accessed via an index. The resulting
image quality depends on the total number of directions, and for N = 256
good results where achieved by Kilthau et. al. [KM01]. Because all gra-
dients are quantized to one of N directions, the resulting image might have
some directional aliasing. The creation of good normal vector quantizers is
essential to minimize the impacts of this principal problem on image quality.
The big advantage is that the texture is 50 percent smaller than using the
approach described in Equation 4.28.
The classification in hardware accelerated volume rendering can be divided
into two different groups. The first is pre-classification and the second one
is called post-classification. The reference point for pre and post is the time

81

82 Chapter 4. Realtime Visualization

when the volume data is interpolated and resampled.
The simplest classification approach is to classify the volume before sending
the texture to the texture memory and to load a RGBα volume as 3D tex-
ture. Here the volume is classified right in the beginning and then sampled.
The disadvantage is that the interpolation is performed on this already clas-
sified volume. This results in coarser looking images. A slightly better, while
more memory efficient approach is to just load the intensity volume and to
classify while sampling the volume using OpenGL lookup tables. Here the
two transfer functions for colour and opacity are combined and loaded as
one 1-dimensional RGBα colour lookup table. These values are assigned to
the texture before the volume is sampled. Here the intensity is just a pointer
into the lookup table. The main advantage besides the memory efficiency
is that now one can interactively change the lookup tables which results in
the ability that the transfer functions can be changed in real-time without
re-loading the entire volume. The disadvantage is that the volume is still
pre-classified which can be seen in the image quality. Figure 4.17 shows two
data sets which where classified using OpenGL lookup tables. Shading can

Figure 4.17: Classification using lookup tables

be performed in a variety of ways. In order to be able to use shading, the
normals for each voxel have to be loaded with the texture. The texture is
then loaded, as described in the beginning of this section as (Nx, Ny, Nz, I)
where Nx, Ny and Nz represent the normal and I is the density value which
can be pre-multiplied by the normal length to achieve gradient magnitude
rendering. One method to incorporate shading is by using the OpenGL ex-
tension texture env dot3 [PGG01]. This extension performs diffuse shading
by using only one light source. While here the normals are interpolated
during the resampling, there length is not necessarily 1.0. This causes ar-
tifacts which can be seen as bumps in the images. The register combiners
can also be programmed directly to support more than one light source for
diffuse and specular illumination [RSEB+00]. Figure 4.18 shows two exam-
ples for classification using the gradient length. Better classification results

82

4.4. Volume Visualization using Texture Mapping 83

Figure 4.18: Gradient magnitude classification
a), and X-Ray b)

can be achieved when post-classification is performed. Here the colour and
the opacity values are looked up in a dependent texture after the volume is
resampled at the slices. When using this technique, the data set is loaded as
luminance texture. After the sampling, the interpolated density values are
used as texture coordinates to lookup a 1-dimensional, previously computed
transfer function [MHW99]. This results in higher image quality as can be
seen in Figure 4.19: A further extension of this technique is pre-integration

Figure 4.19: Post-classification

which samples the volume not only at the slicing planes, but also includes
the values between two slices by pre-integrating them [EKE01]. This is done
in a pre-processing step when the dependent texture is computed. During
the rendering, the volume is sliced in slabs where each slices has a front-
and back-texture which are also classified using a dependent texture lookup.
Image artifacts which occur when the volumes is sampled with too few slic-
ing planes are eliminated. The image quality which can be achieved using
this method is very high. Another advantage is that this image quality can
be produced with less slicing planes.

83

84 Chapter 4. Realtime Visualization

A disadvantage of all these techniques is that the normal vectors are still
interpolated during the resampling. The used normals are not normalized
which results in visible bumps on the volume surface. Also the light direc-
tion can not be changed when only dependent textures are used. Here a
better solution is to employ cube mapping for shading [MGW02]. In this
method, the first texture unit is used to sample the data, using either of the
pre-classification methods. Then from the second to the forth texture unit
the gradient is loaded and in the third texture unit a cubemap which is used
for diffuse lighting is applied. In the forth texture unit a specular cube map
is accessed by computing the reflection vector, the normal, which points
into the cube map. The big advantage is that this method does not rely
on normalized normals and hence perfect phong shading is used. Another
benefit is that using cube maps as many light sources can be used without
an increase in processing time. In addition, the light sources can be of any
shape or colour and the cube maps only need to be recomputed when the
relative distance between two lights changes. To include post-classification
as well, either more texture units are needed, or the register combiners can
be used to perform simple classification.
Cube maps can also be used for environment mapping and to specify a re-
flection map [HKERS02]. This can be used to highlight some material
properties of the displayed object.
Shadows and self-shadowing can also be included into the rendering algo-
rithm which increases the image quality and results in more realistic images.
This can be done by computing a new shadowed volume in the frame buffer
[BR98]. This volume has to be recomputed every time the light direction
changes. Another method which extends the volumetric lighting model by
including light attenuation to produce volumetric shadows and the subtle
appearance of translucency [KPHE02].
All these techniques can add valuable contributions to increase the 3-dimensional
impression of the volume rendered data set. Classification has to be per-
formed in order to categorize the different regions. All other techniques, like
shading, reflection mapping and shadowing increase the image quality, which
can be valuable in order to extract interesting features. Also, the graphics
hardware is still too limited to perform all of these techniques together in a
single rendering pass. This is very important, especially for large volumes
where bricking has to be used.

4.4.7 Proxy Geometry

Usually direct volume rendering is not related to any polygonal surfaces.
But the only primitive that current graphics hardware can render is polyg-
onal data. Because this hardware is so highly specialized, it can render up
to several million polygons per second. This ability, together with some

84

4.4. Volume Visualization using Texture Mapping 85

more advanced texture mapping techniques can be abused for direct volume
rendering. Here the 3-dimensional density field is sampled by the slicing
planes that are laid in the volume. Along these slicing planes, the current
texture is sampled and interpolated and all these slices are then blended
together from back to front. The geometry where the data is resampled is
called proxy geometry, because it only serves as a location where the volume
can be sampled and it has no relation to the data itself. For 3D textures,

Figure 4.20: Orthographic, a), vs. perspective
projection b)

virtually every polygonal structure can be used to sample the signal, but
in order to minimize the slicing artifacts and to reduce the number of sam-
pling planes, viewport aligned slices are prefered. The most commonly used
ones are simple quads defined by 4 vertices. These work well for orthogonal
projections. But for perspective projection, the distance between successive
samples used to determine the colour of a single pixel is different from one
pixel to the next one. Here the solution is to use spherical slicing shells
[BGK+99] instead of planer slices. These spherical shells are spheres with
the centre at the viewpoint and which are clipped against the view frustum.
Now it is guaranteed that each pixel on this shell has the same constant
sampling distance. The main drawback for using spherical shells is that
they are more complicated to setup than simple planar slicing planes. But
often artifacts which are due to planar slicing in perspective projection are
hardly noticeable and planar slices might suffice for most applications.
Figure 4.20 compares a rendering of the engine data set with orthogonal
projection (left) and perspective projection (right). For the perspective pro-
jection, only simple quads were used to resample the volume.

85

86 Chapter 4. Realtime Visualization

4.5 Conclusions

The visualization of scientific data sets is a difficult task. Here the appro-
priate techniques have to be chosen and setup in order to get quantitative
results. This task becomes even more challenging for huge, time-varying
data sets. The fuel cell data set is only one example, see Chapter 2. With
the increase in computing power and finer instruments for measuring, simu-
lations as well as data scans become larger and more difficult to handle. New
techniques have to be developed in order to visualize these huge data sets
interactively. The focus in this Chapter was to extend an existing rendering
algorithm and to develop new ideas which can be used to achieve this goal.
Section 4.1 reviewed the BCC lattice and explained the 4D counterpart.
These lattices can be used to store the data sets more efficiently than the
Cartesian lattice by simply resampling the data and adapting existing ren-
dering algorithms. The 3-dimensional BCC lattice only needs 70 percent of
the original samples, while the 4-dimensional D∗

4 lattice can represent the
entire data set with 50 percent samples less. For huge data sets 30 or even
50 percent less samples seems to be a lot, but in order to be able to really
interact with the data in realtime, the remaining data has to be compressed.
Before the data is compressed, the entire volume is divided into small bricks
and each of them is analyzed to decide which Level-of-Detail is needed to
display the inherent information (Section 4.2). This can vary from zero, the
brick is discarded, to one which renders the brick in full resolution. Bricks
with similar importance are grouped together. After this subdivision, each
brick is compressed using either Cartesian or Hexagonal wavelets (Section
4.3) and the detail information is stored using an RLE scheme. Depending
on the importance of the brick and the globally specified compression level,
some of the detail coefficients are discarded prior to the encoding. Now, the
pre-processing step is finished and the data can be rendered using texture
mapping hardware (Section 4.4). Here, some principles of volume rendering
using texture mapping hardware are explained as well as some more ad-
vanced features of current graphics accelerators.
A short summary of the developed algorithm could be described as:

A new Lattice + Coherency + Compression + Hardware
= Fast Visualization

These techniques allow to store the volumetric data sets more efficiently on
hard disk and because fewer samples are used, the rendering time increases as
well. A more detailed conclusion and also the achieved results are presented
in Chapter 6. Chapter 6 shows conclusions and explains the results from
this Chapter but also the ones from the next Chapter in more detail. The
results are enhanced by images as well as some numbers if applicable. In
the end of Chapter 6 some conclusions are drawn and the usefulness of each
technique is evaluated.

86

Chapter 5

Multiparameter
Visualization

In the last Chapter some methods and techniques for fast volume rendering
of huge time-varying data sets were developed. These methods work well for
unimodal data sets where only one scalar value, i.e. density or attenuation,
is given for each voxel. But some data sets have additional properties and
can consist of several scalar and vector values for each sample point. Data
sets which have more then one scalar value are called multimodal and are
more difficult to visualize than unimodal data sets. Some of the techniques
which can be used for unimodal data sets are also applicable for multipa-
rameter data sets. A huge problem for the display is the high density of
information which has to be displayed without cluttering the visualization.
This Chapter will give a short summary on how to efficiently work with
such data sets and also provide a theoretical overview of possible visualiza-
tion techniques available for multiparameter data sets in general. In the
following sections one can find some well known methods as well as some
new techniques to visualize multivariate data sets. Some selected methods
are implemented to prove their applicability. They are described in more
detail in the single sections of this chapter, as well as in Chapter 7 where
some implementation details are presented.
The accompanying example for the different techniques throughout this
Chapter is the fuel cell data set from Chapter 2.2.1. The used fuel cell
data set is relatively small in size (14×15×100) compared to the final reso-
lution (250×250×1000× t) which will also vary over time t. Unfortunately
the algorithms and the technology to generate these huge data sets are not
available yet. It already took over four days on a large multi-processor com-
puter to create the small, static simulation above. Computer scientists and
mathematicians are currently working on improvements to the algorithms,
but until then, the small data set can be used instead. All of the presented

87

88 Chapter 5. Multiparameter Visualization

techniques can be used in general with other data sets as well, but most
methods will be described using the fuel cell as an example.
By recall from Chapter 2.2.1, the fuel cell data set consists of several scalar
data values and one vector value:

• concentration of oxygen O2,

• concentration of hydrogen H2,

• pressure p,

• temperature T ,

• velocity (vx, vy, vz), and

• concentration of water H2O.

The next section starts with the definition of multimodal data sets and ex-
plains some basic properties and how they impact the form of visualization.
The following two sections describes some obvious techniques and how stan-
dard visualization tools can be adapted to support these methods (Sections
5.2 and 5.3). Sometimes multimodal data sets can also vary over time.
Here, Section 5.4 gives some examples on how to deal with these special
cases. The third last section explains why it is important to give context
information during the visualization and shows some techniques useful to
focus on some specific parts in the data only (Section 5.5). Multimodal data
or time-varying data can also be seen as data sets in higher dimensions. The
next section demonstrates and discusses some methods which can be used
to visualize higher dimensional data sets (Section 5.6). The last section of
this chapter, Section 5.7, employs non-photorealistic rendering techniques
to picture properties of multiparameter data sets and to aid in familiar ex-
periences for understanding this data.

5.1 Terms and Definitions

In this section some vocabulary will be introduced and the main ideas behind
multiparameter visualization are explained. The term multi means more
than one and multiparameter or multimodal simply means that the given
data set contains more than one dependent data value for a single sampling
point. Important for the visualization task are three questions [SM00]:

• What is the data range of the variables?

• What is their spatial reference?

• And what is their time(-varying) aspect or reference?

The range and the type of the data set describes which possible values a
variable can take. This information is also used for the design of the transfer
function which maps the information onto a graphical primitive which can
be displayed on the screen. The spatial reference, if the data has one, shows

88

5.2. Classic Techniques 89

how the data is organized and structured in <n. The local frame of reference
is part of the observation space. To minimize loss of data when mapping
from one space to another, it is necessary that the number of features as well
as the number of data sets remain constant. When projecting from a higher
space to a lower space ambiguities, in the data representation can occur.
Besides the proper visualization of the local frame of reference, also the
sphere of influence for each data point is important. The influence can be
either:

• point based,

• local (neighbourhood), or

• global (for the whole spatial reference system).

The sphere of influence has a huge impact of the type of visualization. The
mapping can be either point based, like direct volume rendering, line ori-
ented, like stream- or streaklines, or global using surface elements. The fuel
cell simulation has (strictly speaking) a point based influence, but is sampled
on a regular grid at discrete points and therefore has a more local sphere of
influence. However, both types of visualization, local and point based are
applicable for the visualization of this data. On the other hand, the vector
data set which shows the flow information of the gases has a local reference
and here line based visualization techniques, like streamlines, are applicable.
A common pitfall in multiparameter visualization is that the huge number of
graphical primitives can clutter the image and make the visualization mean-
ingless. One goal therefore is to find suitable representations which on the
one hand can represent the structure and the information contained in the
data, and on the other hand allow easy interpretation of the visualization
and navigation through different data sets. This is not a trivial task and the
methods and techniques described in this Chapter address this problem.

5.2 Classic Techniques

Probably the easiest way to visualize multi-parameter data sets is to simply
visualize only one parameter/data set at a time. When using these classic
techniques, the existing visualization methods for unimodal data sets can be
used directly. The programs need only a minor modification so that the user
is able to select the current data set and time frame. Everything else stays
the same: the user has still the possibility to interact with the visualization
as well as to change some display specific parameters. Figure 5.1 shows a
screenshot displaying the fuel cell data set. Here the temperature data is
selected and direct volume rendered using alpha blending. A simple exten-
sion to this approach is to choose different visualization techniques for each
parameter or a special colour coding scheme to have more than one param-
eter displayed in a given visualization. Figure 5.2 shows an example for this

89

90 Chapter 5. Multiparameter Visualization

Figure 5.1: Simple multiparameter
visualization

more complex multiparameter visualization. Here the oxygen concentration
data set is blended together with the flow information. This technique is also
known as the Layer Concept and heavily used in cartography where different
sets of layers are blended together, like streets, vegetation or height-isolines.
However, these techniques are limited to a few parameters only. If too many

Figure 5.2: Multiparameter visualization with
two data sets

different techniques are used or too many data sets are visualized, the result-
ing visualization can be too cluttered and eventually even misleading. Some
more advanced techniques can be applied to circumvent or to reduce these
problems. The next section gives some ideas and some examples in classic
multiparameter techniques which can be useful for visualizing the fuel cell
data set.

90

5.3. Multiparameter Techniques 91

5.3 Multiparameter Techniques

While the last section presented only a simple extension to the unimodal
data visualization, this section covers some more advanced methods and
techniques to handle multiparameter data sets. First, when speaking about
multiparameter visualization, one needs to think about what the important
information is. Often some parameters are correlated and do not need to
be visualized twice if one value can be derived from another one. This is
dependent on the given data set and needs to be decided prior to visualiza-
tion. The fuel cell data set has correlation to some degree but not enough to
skip one of the data sets entirely. Figure 5.3 shows two iso-surfaces blended

Figure 5.3: Two iso-surfaces, yellow - oxygen,
red - hydrogen

together. The yellowish one shows the oxygen concentration, the reddish
one the concentration of hydrogen. Both iso-surfaces are similar, but one is
pointing in the direction of the flow, and the other is pointing the opposite
way. Also the pressure is, as can be assumed, higher behind the tip of the
flow (as is the reaction temperature). To conclude, correlation is applicable
for the fuel cell data to some degree. One needs to decide what is a good
mixture to visualize together. With all the correlation of the fuel cell data
in mind, A useful selection might be to direct volume render the temper-
ature together with an iso-surface of either the concentration of oxygen or
hydrogen and extend this with hedgehogs or glyphs showing the flow infor-
mation. Figure 5.4 depicts this combination. In this image the temperature
visualizes the speed and the strength of the reaction and hence also shows
where the highest concentration of water will be. The hedgehogs display
the flow information of the gas mixture, and the gas concentration can be
derived from the iso-surface which is mapped to oxygen. The pressure is
highest where the temperature is high and behind the tip of the flow.
Also uncertainty information could be included to clarify that this data is
sampled on a regular grid at a certain sampling distance and that no contin-

91

92 Chapter 5. Multiparameter Visualization

Figure 5.4: Selected fuel cell visualization

uous signal is visualized. Even though this is not a real application for the
fuel cell data, it might be useful for downsampled data sets to enhance the
loss of information there. It also allows the viewer some more freedom in
concluding or formulating hypotheses about the displayed data. The human
visual system is very good at integrating visible primitives together which
makes also the field of NPR very interesting for these kind of techniques.
See also section 5.7 for a more thorough discussion on this topic.

5.3.1 Scatterplots

Scatterplots have a long history in visualization. Their origin is mainly infor-
mation visualization, where they were used to display multiparameter data
sets. In principle they combine every parameter with one another to create
different (panel-)images. From these images one can relate a set of parame-
ters and also compare these information pieces to the global behaviour and
the underlying nature of the data set. Most often scatterplots work on 2D
images where two different 1-dimensional data sets are used. But they can
also be extended to 3D or higher dimensions. In medical imaging they are
used to split a 3D volume into three 2D image stacks that can be viewed
sequentially. Figure 5.5shows such an application from medicine [Cor].
Here the 3D volume is visualized through a set of slices. In this example,
only one set of slices is displayed, but all three (axial, coronal and sagittal)
can be used together as can be seen in Figure 3.6 on page 19. Each set of
slices shows as much 2D slices as possible for the given resolution. If they do
not entirely fit on the screen, one can select different ones using a scrollbar
[RMC+00].
This example can also be extended to higher dimensions, like displaying all
time-frames of a volume that vary over time. One could also swap some
axes in the display and show (x, y, t) volumes over z. This would show the
changes over time of one slice in a volume. By moving through z, different

92

5.3. Multiparameter Techniques 93

Figure 5.5: Screenshot from medical
visualization software

slices are selected and displayed with the appropriate time information.
For the fuel cell data, scatterplots can be used as in medical imaging for sim-
ply slicing the volume data and displaying it along the coordinate planes.
This might give more precise results in comparing one data set with another
one. One could also easily go down one dimension further and slice the
volumes along lines. Then two different volumes can be directly compared
in one single image. The common factor that is used is the position of the
data.

5.3.2 Hierarchy

The principle of hierarchical techniques is the arrangement of the data set
into a hierarchical structure. The goal is to show global properties of the
data set as well as some selected detail information. A hierarchy can be used
in two different ways [SM00]:

• hierarchization in presentation space, and

• hierarchization in data space.

The first one creates a hierarchy in the presentation space by subdividing the
2- or 3-dimensional space into subspaces, while the second one establishes a
hierarchy on different levels of the dependent variables.
Worlds-within-Worlds is the name which was used by [FB90] to subdivide
the 3-dimensional representation space. This technique uses for every data
point a local coordinate system to visualize more than one parameter. This
method can be nested to a certain degree. For too many layers the visual-
ization can easily get cluttered and disordered. It usually works with user

93

94 Chapter 5. Multiparameter Visualization

interaction to specify a point of interest, at which position the next layer is
generated and displayed. Which geometric primitive works best to map the
data in the local coordinate systems is dependent on the application and the
data set. It can also include iso-surfaces and direct volume rendering if the
last set of dimensions is not three. Worlds-within-Worlds are very effective
when using stereoscopic devices in order to have a better understanding of
the location where the tree branches. An example for the fuel cell data
might be that the visualization starts with displaying the topology of a fuel
cell, probably by showing a wireframe of the area where the chemical reac-
tion takes place. With a 3D cursor, the user can interact with the data and
display more information on interesting locations. Here classic visualization
techniques, like streamlines, glyphs or iso-surfaces can be used.
A hierarchization in data space subdivides the data sets and builds a hier-
archy depending on characteristics of the data values. One direct example
is a multiresolution representation where first a course representation is dis-
played which can be refined by branching to the next level. Another example
for the fuel cell data would be to start with the temperature data which in-
dicates the magnitude of the reaction and then ramify to the concentrations
of oxygen, hydrogen and water. Here for the rendering, also classic visual-
ization techniques can be used.

5.3.3 Shadow Projection

A very intuitive and easy to implement technique for multiparameter visu-
alization would be a modified shadow projection algorithm [KDG99]. Here
the centre of the visualization is the context object, which provides one with
global context information that all data sets have in common. This infor-
mation can have a structural nature, like the silhouette or an iso-surface of
the physical topology. It could also represent a mixture of some parameter
channels, but it must provide a global understanding of the entire data set.
Around this context visualization, several planes can be drawn, each one
displaying a different parameter or data set. They could also depict all the
same data set, but using different transfer functions or different visualization
methods for each plane. The normals of the projection planes are inverted,
so that the planes which are facing towards the viewer are not displayed.
Figure 5.6 shows an example which explains the principle for the fuel cell
data set. On the three sides visualizations of different data sets are shown,
while the centre displays the oxygen concentration of iso-value 225. In this
example the context object is an iso-surface of the physical structure of the
fuel cell. A cube with inverted normals surrounds the visualization and den-
sity maps of the different parameters are projected onto the cube’s inner
faces. While rotating either the cube alone or together with the context
object, different data sets will be diplayed and the projection angle changes.

94

5.3. Multiparameter Techniques 95

Figure 5.6: Modified shadow projection

To support the user’s orientation while interacting with the visualization, a
3D cursor or icon would be helpful when rotating or moving the objects. A
coordinate cross would rest anywhere in the context object while the pro-
jected 2D coordinate cross also marks its position in the projection space.
Originally, this technique was developed for shadow projections to enhance
the 3D understanding and to better perceive the 3-dimensional structure of
the visualized object in the 2D image.
A related approach is discussed in Section 5.5.2 where the focus is on detail
and context visualization.

5.3.4 Probing

Probing is not a technique by itself, but often used as interaction method to
let the user experience the data set. By probing the data sets, users can step
through the data in whole or in part and receive more detail information at
points of interest. The probe can be any geometric primitive which maps
the data into visible form. One example of probing is in the hierarchical
subdivision of the presentation space where the user has to specify at which
location this subdivision should branch (see also section 5.3.2).
Another example is when the user can places a rake into a flow field to gen-
erate streamlines which originate from this rake and follow the flow field.
By moving through the field, the user will get an understanding of the flow
by integrating over the different visualizations. Other geometric primitives
like glyphs can be used as well to map information from the current location
into visible properties.
Another approach is described in the next section where a special lens is
moved through the data set to evaluate some algorithms in specific regions.
Additionally a 2- or 3-dimensional coordinate cross can be used to high-
light the current position-of-interest in the data and to extracts detailed
information at this position.

95

96 Chapter 5. Multiparameter Visualization

5.3.5 Special Lenses

As described in the previous section, special lenses can be anything from
defining a region-of-interest (which is handled differently then the rest of
the volume) to methods which extract and visualize information for the
affected region. These lenses, sometimes also called magic lenses, or regions-
of-interaction are for playing around with the data and evaluating some
special things for these regions. These things can perfrom a wide variety of
functions, such as:

• enhancing or suppressing a region,

• enhancing or suppressing some features,

• choosing a different style of visualization,

• blending together data sets or choosing a different data set,

• interacting with the region differently,

• cut out the region,

• render only this region,

• change parameters for the visualization, to

• change the Level-of-Detail/resolution, and more.

All these lenses are used to either enhance or suppress something or to add
some additional information. These lenses/regions can be of any size or
shape. They can be 2-dimensional for images and 3- or higher dimensional
for 3D objects which might also vary over time or which have more than
one parameter. A good choice is a sphere or a circle because of its isotropic
character. An example for a simple lens would be a sphere which either

Figure 5.7: Interactive volume clipping

96

5.3. Multiparameter Techniques 97

enhances or suppresses the entire selected region by changing the (opacity)
transfer function. If the opacity in the region is set to zero, the lens can also
be used to clip portions of the volume to look on details behind. An efficient
implementation of this technique using OpenGL hardware is already avail-
able and was published by Weiskopf et. al. [WEE02]. Figure 5.7 shows an
example of this technique.
A variation of this is when the region, or part of it, is rendered differently
then the rest of the visualization. For instance the entire data set is rendered
using direct volume rendering, but a mobile spherical region is displaying an
iso-surface using a given threshold. This way the global volume is present
using volume rendering and some mobile ROIs can be explored in a different
rendering style [SHER99].
Important for multiparameter visualization is that these regions can also
show different variables. For the fuel cell data, one could render the over-
all visualization using the temperature data set and have some additional
mobile spherical regions which display the concentration of oxygen or the
amount of water. These regions can now be moved around and to see val-
ues at different locations. Figure 5.8 shows an example for the fuel cell
data set where an iso-surface for the concentration of oxygen is visualized
together with a volume rendered sphere of the temperature data set which
additionally shows some flow information. Some of these techniques are also

Figure 5.8: Interactive combination of different
data sets

discussed in Section 5.5 Focus and Context. Another example is to use the
magic lens as a real lens. Here the region can be distorted using fisheye
views to magnify the region inside the lens centre while still displaying the
rest of the data set. An example can be found in [CCF97].
For huge data sets, like the visible human, another method could also help
to increase the rendering speed. If the entire volume is rendered with low
resolution, the region inside the sphere-of-interest can be rendered in higher
resolution and quality. In combination with an eye tracker this could be

97

98 Chapter 5. Multiparameter Visualization

very powerful and improve the overall performance. But even without, when
pushing the sphere manually with a mouse the viewer’s focus rests on the
sphere, and hence only this region needs to be rendered in full resolution.

5.3.6 Customized Glyphs

Glyphs are 2- or 3-dimensional icons which can be placed inside the data
set to visualize some information at a given point. The usage of glyphs is
very popular for flow visualization where these icons are placed in the flow
field and point into the direction of the flow. Other parameters can also
be mapped to the icon like size or colour. Figure 5.9 shows an example of
a dynamic SPECT kidney study where glyphs were used to visualize the
flow inside the kidney [TRM+01]. The glyph, in this example a cone, is
pointing into the flow direction and the colour and the size are mapped to
the magnitude of the flow. In this image, only the left kidney is shown with
the ureter and the aorta abdominalis. A problem with too many glyphs is
that the visualization can get cluttered very fast and the resulting image
will be meaningless. Taking several neighbouring glyphs together one can
reassemble the global information contained in the flow field while still see-
ing details from each single glyph. Glyphs can also be specially designed to

Figure 5.9: Glyphs in flow visualization

fulfill the specific visualization needs of a given data set. Here one needs
to decide what information is important. This plays an important rule for
multiparameter data sets where the visualization of lots of data does not
necessarily makes sense.
For the fuel cell data set, we have six scalar values, including the vector

98

5.4. Time-Varying 99

magnitude, and one vector for each data point. A simple customized glyph
might be a 6-sided cone which would be able to represent all data values,
but the visualization would be difficult to read and some information may
not even be visible due to occlusion effects.
Classic glyphs include also the star shaped glyph which is used to present
scalar information only, but it can also be adapted to display vector infor-
mation. An example for these glyphs can be found in [SM00].
When vector information needs to be displayed, animating the glyph might
help as well. Here recent studies have shown that a user is only capable of
perceiving as many as five different sets of motion. Also, moving icons may
distract too much, so the use of animating glyphs in a visualization needs
to be carefully considered. Speedlines, lines behind the object that is in
motion, and motion blur can help to depict motion in motionless pictures
[MSS99].
The Jumping Jack Icon is a special kind of glyph where a stick or line figure
is used as glyph [Srd]. The arms and legs can vary depending on the current
data point. The big advantage of the Jumping Jack icon is that the viewer
tends to assemble the icons together and global trends become immediately
visible.

5.4 Time-Varying

In scientific visualization time-varying data sets can be divided into three
groups. The first group contains data sets which are not time-varying and
show only static information, but which might have a link to a specific point
in time, e.g. a snapshot. Data sets from the second group are time-varying,
but they are sampled only at discrete time steps and called semi-static. The
third group represents data sets that are continuous over time and these are
referred to as dynamic data sets. The most often used data sets are from the
first and the second group. The third one is only available from continuous
simulations or if one interpolates additional samples between two discreet
time points. Even though the second one is not really dynamic, it is usually
referred to as dynamic.
To visualize time-varying data sets (i.e. the cases two and three) one can use
several well known methods which all have their advantages and disadvan-
tages. Some of them are even applicable to static data sets. A frequently
used method is animation. Here first an image using a specific visualiza-
tion technique is created and saved. Then the next time frame is loaded
and with the same technique another image is generated. The camera can
remain at the same position for every time frame or can be animated and
moved through the visualization space. All these single frames are then
composed into an animation video. This simple technique can be varied in
a number of ways. One is to alter the visualization technique or to just

99

100 Chapter 5. Multiparameter Visualization

vary some visualization specific parameters. The animation of parameters
can also be used for static data sets. An example is the visualization of the
different layers of a data set by animating and browsing through different
iso-values. Other visualization parameters, like thresholds for streamline
integration length, can be varied as well. Figure 5.10 demonstrates both
techniques with three frames each. The first, Figure 5.10 a), is an example
for a parameter animation from the flow magnitude of the fuel cell data set,
while Figure 5.10 b) display a time-varying kidney study over time. Usually

Figure 5.10: Animations: over time a),
parameter b)

every parameter that is used in the visualization can be animated. This
includes colour and opacity for the transfer functions, but also the graphical
primitives themselves. Their shape can be altered and they can be morphed
between two shapes. With all these possibilities, special care has to be taken
to not overkill the visualization with too much motion.
Time-varying data can also be displayed without any animation by simply
using the colour of glyphs to visualize the deviation over time. This would
allow one to easily identify regions which have a high temporal gradient.
Besides the glyph technique which visualizes the deviation to give an idea
of the temporal behaviour of a ceratin object, some techniques can visu-
alize the complete time spectrum in one image. An example is to simply
switch the time with one spatial axis. Now one 2D slice is visualized over
time. To not lose the context information, two visualizations can be used

100

5.5. Focus and Context 101

concurrently, one showing the position of the slice in 3D space and the other
displaying the slice changing over time (see also Section 5.3). Additionally,
higher dimensional display techniques can be utilized to visualize four or
more dimensions. See Section 5.6 for a more detailed discussion on this
topic.
All these techniques can be used for the fuel cell data set. For the cur-
rent setup of the fuel cell design, animations and complex visualization are
not necessary (yet). With complexer structures and a more realistic design,
see Chapter 2, animations and the visualization of the temporal component
become invaluable to detect vortices and structural weaknesses in order to
improve their efficiency.

5.5 Focus and Context

When dealing with multiparameter data sets, usually more then one data
set or parameter is displayed in the same visualization. The resulting im-
age can easily get cluttered and appear more confusing than helpful. Most
visualization algorithms or multiparameter techniques can be modified so
that one area or one data set is in focus. The rest of the information can
be visualized in a different way and serve more as context or background
information. Figure 5.11 shows an example for a kidney data set: This visu-

Figure 5.11: Focus and Context example

alization shows the concentration of radioactive tracers from nuclear imaging
in a dynamic SPECT kidney study [TRM+01]. The concentration of the
labelled pharmaceuticals is displayed using volume rendering and context in-

101

102 Chapter 5. Multiparameter Visualization

formation, the anatomical structure, is displayed as wireframe which shows
the outline of the kidney as well as the blood and urine vessels.
Easily changing the focus and redirecting it to another position if very im-
portant to highlight specific regions of the data set. This can be done by
using an interactive lens or other 3D cursor which were described earlier in
this chapter in Section 5.3.5.
It is usually the best to show all the available information at once, but for
most data sets this is not practical because of the huge amount of data.
Here, focus and context techniques can help. They are not only useful for
multiparameter data sets, but also for static data where these techniques
can be used to navigate and explore large data sets.
The next two sections give a more detailed overview of what weighting tech-
niques can be applied and which methods can be used to set one part in
focus and the other one out of focus. The second section gives some more
insight in ongoing research on how detail information can be displayed with-
out destroying the reference object.

5.5.1 Weighting

Focus and Context means that one part of the data is enhanced in the vi-
sualization and that some other information is given in order to provide
structural or context information. The advantage is that one portion of the
data set is highlighted and detailed enough to work with, but at the same
time one is still able to evaluate this data on a global scale.
One possibility to achieve this is to apply different weights to the used graph-
ics primitives to differentiate between objects of focus and objects of context.
Colour and opacity can be varied to enhance or suppress some regions, like
standard transfer functions. Also, usually not the entire data set has to be
in focus. An interactive lens (see also Section 5.3.5) can be used to have
only some parts of the data set in focus, the part inside the lens. Other
visualization specific parameters like size, motion or transparency can be
used in addition to distinguish objects in and out of focus.
Another idea would be to use focus in the photographic meaning and rep-
resent the visualization using some depth-of-field method [KMH01]. Here
the interesting parts of the data set are in focus and sharply visible, while
the surrounding data is slightly blurred and not in focus. This immediately
highlights the important parts in the middle while still giving some context
information. For this technique, an interactive lens could be, even literally,
used for interaction. This is similar to the first x-ray slicing which was used
before the CT technology was developed in 1973 by Hounsfield [Hou73].
Here a film was used and placed at a special position, so that the organ of
interest was imaged clearly but all the other information which was below
or above the slice of focus was blurred. Only this blurring made it possible

102

5.5. Focus and Context 103

to observe a clear slice inside the body. This technique has is to be mistaken
with the classic x-ray invented by Wilhelm Conrad von Röntgen in 1895.
The very classic approach, depicted in Figure 5.11, shows the data of interest
surrounded by either a wireframe or a translucent surface which visualizes
structural information, like boundaries or the size of the data set. These
weighting methods can be applied to all parameters which can influence the
visualization. Segmentation techniques can be used prior the mapping to
further enhance the visualization.

5.5.2 ExoVis

ExoVis is a framework to develop new focus/context techniques and to eval-
uate their applicability. This work is ongoing research by Melanie Tory
[TS02] and part of her Ph.D. thesis. Exo is derived from Greek and means
outside or external and this is actually what ExoVis is doing. It visualizes
the detail information (focus) outside the reference object (context) by link-
ing them together in a way that the immanent relationship is clearly visible.
Two different widgets were introduced, one to visualize 2-dimensional slices
and another one to render 3D callouts. Figure 5.12 shows an example for

Figure 5.12: ExoVis - 2D widget

the 2D slices. Here one semi-transparent slice is put as a placeholder inside
the volume to mark the spatial position of the detail slice. The plane where
the slice will actually be displayed is put in parallel to the placeholder in the
visualization space. This helps to relate the view to its placeholder. Also
several copies of the same plane can be generated, each showing the same
data with different transfer functions or different modalities from a multi-
parameter data set. This allows one to easily compare different data at the
same position and to make conclusions about similarities or dependencies
between these data sets. The placeholder can be rotated and translated

103

104 Chapter 5. Multiparameter Visualization

Figure 5.13: ExoVis - 3D widget

through the object. The slice will automatically be updated. The 3D call-
out widget is displayed in Figure 5.13 and is a natural extension to the 2D
widget. In this example two copies of one callout region are made. One
shows an iso-surface and the other one a semitransparent rendered volume.
The same qualities that apply to the 2D counterpart apply to the 3D ver-
sion as well. The advantage of both techniques is that one has the entire
object of context and can visualize this using whatever display technique is
appropriate. The placeholder shows the exact position of where the detail
information is originating.
One problem that might occur is that when one visualizes too many of the
2D slices or 3D callouts, the image can get cluttered and too much infor-
mation will be displayed. Here the solution could be that the visualization
space for all detail images or volumes can be made smaller so that all detail
data sets fit on the display and can be seen without overlapping. Then a
mouse over could be used to activate a zoom-in where the current slice or
volume is moved to closer distance and scaled to its original resolution. This
would be a classic focus/context technique and similar to the use of a fisheye
lens. The other solution would be that all detail objects are equally spaced
around the object and that they are only visible when the object normal is
pointing towards the camera. This method is similar to the shadow projec-
tion method which was described earlier in this chapter in Section 5.3.3.
When focusing on the visualization of fuel cell data, one first needs to de-
cide what context information will be used. The simple answer would be
structural layout which could be rendered as semi-transparent wireframe
and used with all other data sets. Another possibility would be to use a
data set that describes the strength of the chemical reaction, like the tem-
perature data, together with the pressure and the flow information. Now
either or all of these can be used as context for the input of the reaction, i.e.

104

5.6. Hyperspace 105

the concentration of O2 and H2, or the output H2O. After this, one has to
decide what weighting scheme is appropriate. To visualize more than one
data set, opacity and colour indexing could be used. The techniques from
the last section are very useful to extract one slice from the volume to use
as reference to evaluate all the available data sets. One would gain a very
good understanding of the reaction as one could see a reference object and
detail information at the same time.
So far only 2- and 3-dimensional visualization techniques were discussed.
The next section focuses on higher dimensional visualization techniques
which can be used to display 4D time-varying data sets in one single image
to directly derive some temporal behaviours of the data set.

5.6 Hyperspace

One drawback of most visualization techniques is that they are rather limited
for visualizing higher dimensional data sets. The temporal features of a
data set can only be observed through animation and visualizing all time
frames successively. A technique which would be able to show all this 4D
information in one picture would be very helpful to immediately reveal the
temporal behaviour. While most time-varying data sets are represented as
3D cubes which are varying over time, the use of the hyper space would
enable one to see everything in one picture.
The first publication about hyper space was the book“Flatland”from Abbott
[Abb94] where he describes the experiences of a 2-dimensional rectangle,
called A.SQUARE, and his discoveries in a 3D environment. Figure 5.14
shows a sketch of his house. The book describes the journey of A.Square who

Figure 5.14: The house of A. Square

is a resident and a mathematician of the 2-dimensional Flatland. Residents

105

106 Chapter 5. Multiparameter Visualization

of Flatland have a different number of sides depending on their social status.
Woman are represented as thin lines which represents the lowest shape in
2D. Through his discoveries he experiences Pointland (1D), Spaceland (3D)
and the 4th dimension. Abbott choose a story in a lower dimension so that
his readers could imagine that the same procedure applies also from our
3-dimensional spatial universe to a 4-dimensional one.
One understanding of our existing universe is that it actually has not only
four dimensions, but ten. While six of them are curled up so that they do
not influence our space, the other four dimensions build the 3-dimensional
space with one temporal dimension as we know it [Kak84].
If a human enters a 2-dimensional world (i.e. a plane) the world’s inhabitants
would not be able to perceive nor understand the third dimension. They
would only see 2-dimensional slices of the human which would not necessarily
have to be connected. For instance, if a hand intersected with the 2D world,
it would be only visible as five circles. They are just 2D projections out of 3D
space. The same applies also in the other direction, when going from 3D to
4D space. A 4D being entering our three spatial dimensions would be sliced
in 3D and might appear as several blobby 3D objects which are connected in
the 4th dimension. Another advantage for the 4D inhabitants would be that
they could entirely look into our body and even perform surgery without
opening the body. This idea becomes more clear when thinking about how
we perceive the 2D space. In 0D, only one object can exist, a infinitesimal

Figure 5.15: 4D hypercube

small point. In 1D, the point can be extend orthogonal to itself and is now
a line. If this line is extended again orthogonal to itself one obtains a square
and for 3D a cube. To find out what the shape of a cube, or tesseract
in 4D is, one has to glide this cube orthogonal to itself. Because we only
have 3 spatial dimensions, we can not really do this, but Figure 5.15 [RA]
shows the principle of the tesseract or hypercube which is the extension of
a regular cube by another spatial dimension. A hypercube is composed out
of 16 vertices which are connected by 32 edges which build 24 faces or 8

106

5.6. Hyperspace 107

bounding cubes. The 4 edges on each corner are orthogonal to each other.
We can perceive the tesseract only as shadow projection from 4D into our
3D space. Figure 5.16 [RA] shows the principle for the projection from 3D
to 2D. Because we already loose one dimension from the projection, the best
visual impression of the hyperspace could be perceived when 3D stereoscopic
devices are used. To exploit these qualities for scientific visualization, several

Figure 5.16: Projecting from 3D to 2D

techniques can be applied which shall be discussed in the next three sections.
For the shading of 4D objects 4D light sources have to be used [HH]. If
just 3D lights were used instead, the entire data set could not be lit. An
example is to light a 3D surface with a 2-dimensional thin line. Only parts
of the surface would be visible and perceiving the object shape would be
rather difficult. Other techniques were developed which extend the idea
of displaying 2D images as 3D height maps to four dimensions. Now 3D
volumes can be visualized in the same intuitive way [HH92].
The next three sections give some little insight of how volume rendering,
iso-surface visualization and slicing can be performed on 4-dimensional data
sets.

5.6.1 4D Volume Rendering

Some work in visualizing so-called hyper volumes was done by Bajaj et.al.
[BPRD98]. They implemented a splatting algorithm which allowed the visu-
alization of n-dimensional data sets by re-orienting as many coordinate axes
as needed in 3D space. Interaction includes stretching or rotating all axes
to enhance one or several axes specifically. Figure 5.17 shows a screenshot
of an example image of a 5D interaction energy scalar field of a chemi-
cal compound. Here red denotes attraction, blue repulsion, and green free
movement. A different approach, which is not heavily explored yet, would
be to visualize the 4D volume as a tesseract and to project it into 3D space.
The data must be (re)sampled onto a 4D hypercubic lattice. While orbiting

107

108 Chapter 5. Multiparameter Visualization

Figure 5.17: 5D interaction energy scalar field

around and rotating the tesseract, one should be able to detect temporal
patterns in all dimensions in the visualization, if they exist in the data.
However, the interaction with the data in 4D would not be as intuitive as
in 3D. The number of rotations for higher dimensions grows quadratically
with the order of the dimension. In 4D six different 4D rotations, around
the xy, yz, xz, tx, ty and the tz axis exist. If the hypercube is projected
using perspective projection, usually along the direction of the positive time
axis, all points will be scaled accordingly to their position in time, e.g. the
4th dimension. The perspective projection can be written as:

f(x, y, z) = ((
x

t+ c
), (

y

t+ c
, (

z

t+ c
), (5.1)

with t as the position in time and c as an offset. Figure 5.18 [MSO] shows
a 4× 4× 4× 4 euclidian hypercubic lattice which is displayed in perspective
along the positive time axis t. In Figure 5.18 the blue cube which is closest

Figure 5.18: 4D hypercubic lattice

in time is rendered largest versus the red cube, as farthest away is rendered
smallest.

108

5.6. Hyperspace 109

5.6.2 Iso-Surface Extraction in Higher Dimensions

The extraction and the visualization of iso-surfaces is a valuable tool to
identify features in the data and to display the different layers of a data set.
The problem with most visualization techniques when it comes to higher
dimensional data sets (n > 3) is that the data has to be first downsampled
into <3 before it can be used for the visualization. For time-varying data
this is usually done by simply visualizing one frame at a time. But the
drawback here is that features which are contained in the time domain are
sometimes difficult to detect and eventually lost.
Weigle et.al [WB] used a technique which first generates a 4D iso-surface
that satisfies f(x, y, z, t) = C which is then used to re-triangulate new iso-
surfaces at interpolated time steps. A recursive contour meshing algorithm is
used to extract the iso-surfaces from 4D data. The final 3D slice is extracted
by using a second constraint that locates points which lie on the same time
on this iso-surface. Another advantage is that this method also allows for
multiresolution mesh generation which helps one to quickly browse through
the surface in 4D.
A similar method developed by Praveen et.al. [PWC] extends the Marching
Cubes algorithm from Lorensen et.al [LC87] to extract iso-surfaces in any
dimension. This is done by automatically generating a lookup table for
the iso-surface and its corresponding triangulation for all possible states of
the hypercube in a n-dimensional regular grid. After the n-dimensional iso-
surface is computed, it can be sliced either perpendicular to the time domain,
for time-varying data sets, or arbitrarily to obtain a 3D data set. This data
set can now be rendered using standard OpenGL graphics techniques. The
advantage is that features which evolve over time or in higher dimensions
can now be observed more easily.

5.6.3 Slicing in 4D

Slicing a n-dimensional object usually results in a (n−1)-dimensional object
which displays the information contained at this slicing plane. The slice of a
4D data set is a 3D object. Usually 4D time varying data sets are visualized
using some sort of time slice technique where the user can step through the
data set in a multi-frame animation. Here the 4D data set is sliced along the
time axis and sampled at discrete points in time which yields the original
frame at this time step. But slicing could also be performed in a way that
several (n − 2)-dimensional objects are extracted. In 3D this would result
in three lines which intersect each other at the position in space where they
are extracted (focal point). In nD, this would result in n2 2D slices which
would also intersect each other at the given point in space/time.
Van Wijk et.al. [vvL93] developed a technique they call Hyperslice which
allows one to extract 2-dimensional slices from a n-dimensional data set.

109

110 Chapter 5. Multiparameter Visualization

Here the slices are shown as a matrix of orthogonal 2-dimensional slices.
Figure 5.19 shows a screenshot of the Hyperslice technique applied to a 4-
dimensional potential function. In general, this technique is a variation of

Figure 5.19: Hyperslice of a 4D potential
function

the Scatterplots, which were discussed earlier in Section 5.3.1. This tech-
nique does not project the entire data set, instead, a selection is made and
the result is displayed as 2D images. By moving the focal point, or point of
interest, one can navigate through nD space.
This technique demonstrates an easy to implement and use method for view-
ing higher dimensional objects (n > 3). Disadvantages are that only a
selection of the entire data is shown and that the number of slices grows
quadratically, which makes a visualization for very high dimensions diffi-
cult.
The Hyperspace can be used in a variety of ways for the fuel cell data set. It
could be used to visualize the temporal behaviour of the single data sets, and
some data sets could also be combined in the visualization. The hyperslice
method could be particulary useful for this.
Unfortunately only little research has been done so far in the field of higher
dimensional data visualization. One drawback still is that four- or higher-
dimensional data sets can be very huge in size which makes handling and
realtime processing very difficult. With future hardware improvements, this
might change.

5.7 Non-Photorealistic Visualization

Since the beginning of computer graphics, people were driven by the goal
to generate images that were indistinguishable from real photographs. This

110

5.7. Non-Photorealistic Visualization 111

movement still exists in a number of fields in computer graphics. It is most
noticeable in the computer game industry which tries to make their simu-
lations and renditions as realistic as possible. Figure 5.20 shows a screen-
shot of current game which demonstrates the possibilities of today consumer
graphics accelerators. While these pictures often attempt to look perfect

Figure 5.20: Screenshot from “Burnout 2:
Point of Impact”

and want to simulate the real world through a camera’s eye, some other
computer artists try to achieve a similar effect for simulating hand drawn
looking images. Non-photorealistic rendering of graphics models (i.e. polyg-
onal data) has gained more in recent years, but it is still rarely used for
the visualization of volumetric data sets. These techniques try to simulate
the process of generating hand drawn looking images. One advantage of
non-photorealistic rendering (NPR) is that it stimulates the human visual
system in a way that appears to be natural. These non-perfect images leave
some room for personal interpretation. Here, the images can be simplified
by removing unimportant information. In a different way, NPR can also be
used to explicitly point to certain characteristics in the data by enhancing
selected structures. The human eye is very good at guessing from imperfect
information and when a sketchy or fuzzy image is shown it tries to integrate
over the whole image to grasp the global picture. By exploiting this quality,
not the whole data set needs to be displayed, a low resolution version might
suffice to get the same interpretation as with a high resolution version. As a
result, NPR can also be used as a compression technique to reduce the size
of the data set to what is really necessary for the interpretation. This would
be very helpful in volume rendering where huge data sets could be rendered
faster when this quality is used.
In a similar way NPR can be employed to specifically enhance or suppress

111

112 Chapter 5. Multiparameter Visualization

some features or parts of the data. For instance, homogenous regions can
be drawn such that one can assume and rely on the law of continuity. Here
not all information has to be presented.
But this is only one advantage. NPR can also be used to discuss unfinished
or unclear projects or objects. An architect might want to show a sketchy
version of his idea first to invite discussions. All this would be very help-
ful for medical or scientific visualization as well, where one wants to make
an opinion about the data and to formulate a hypothesis about the under-
lying information. Here NPR visualization can help to provide prominent
features of the data without showing too many details in order to provoke
some discussion and to deflect from too obvious solutions which might led in
a wrong direction. Also, because one is not directly working on the data set
and eventually even using a low resolution version, reconstruction artifacts
become negligible.
Recently, with the availability of new and fast evolving graphics hardware,
scientists are interested in achieving these results in real-time, which would
allow more natural interaction.
The following two sections are a short overview of possible techniques which
can be utilized for scientific visualization, especially for fuel cell simulations
in order to enhance their expressivity and to leave more freedom for conclu-
sions.

5.7.1 NPR for Volume Visualization

While volumetric data sets are a little different from polygonal data, there
are some similarities one can take advantage of in order to adapt some of
the existing NPR algorithms to visualize volume data sets using NPR tech-
niques. One important feature which can be used for non-photorealistic
rendering is the gradient information. It can be approximated by using cen-
tral differences (see Chapter 4.4.5) or by using more advanced techniques
to achieve better results. In most cases the central differencing works well
on a previously smoothed data set. This gradient information can be used
together with the density value and more advanced transfer functions to
perform volume illustrations [ER01]. Volume illustrations can include the
enhancement of silhouettes and internal boundaries as well as tone shading
and the use of special depth cuing. Figure 5.21 shows some examples.
The first image shows a CT scanned thorax using standard colour and opac-
ity mapping. In the second image, the silhouettes and the boundaries are en-
hanced, while in the third image a tone shading was used in addition. When
using the last technique, surfaces which point towards the light source re-
ceive a warm colour tone, while all other surfaces are coloured using a cooler
tone. In both images the edges are enhanced which makes the image appear
sharper and more detailed. It uses the fact that the human visionary system

112

5.7. Non-Photorealistic Visualization 113

Figure 5.21: Volume illustrations

is most sensitive to edge information.
Additionally, before the data sets are used for any kind of volume rendering,
some image pre-processing could be used to perform edge enhancements,
like unsharp masking where the gradients are elongated and let the edges
appear sharper. This gradient information can also be used to build a com-

Figure 5.22: Charcoal line drawing skull data)

pletely different type of renderer by evaluating the gradient information and
interpreting it as lines. One would be able to build a line renderer, similar
to existing solutions for polygonal space [SR98]. A first step in this direc-
tion by creating a stipple based volume renderer was done by Ebert et. al.
[LME+02]. They used the gradient information in a variety of ways together
with the original density signal to create renditions in a stippling manner
for volumetric data sets.
All existing polygonal NPR techniques are directly applicable if one first
extracts iso-surfaces from either the intensity value alone or from a com-
bination with the gradient magnitude. This data could be used to build
iso-surfaces depending on the importance in the data and on which some
NPR techniques can be evaluated. Also cartoon shading could be applied
where simply a colour ramp with three or four different colour values is used
to classify the data. This transfer function can be either applied for the
entire data set, or to some regions only. Also faux shading which is a sim-

113

114 Chapter 5. Multiparameter Visualization

Figure 5.23: Charcoal line drawing engine

ple modification to the transfer function, could be used to create silhouette
edges. The engine data, for example, consists of three different materials:
one is noise (which can be skipped) and two different kinds of metal. Here
two cartoon colour transfer functions together with an silhouette and edge
enhancement can be used to achieve cartoon shading for volumetric data
sets.
Figures 5.22 and 5.23 shows two example for NPR like volume rendering.
Here the gradient magnitude is used together with a special transfer func-
tion to render charcoal looking images. The focus for Figure 5.22 was on
the teeth.
Some of these techniques can be implemented using hardware acceleration
and OpenGL. Lum et. al. [LM02] showed an interactive rendition using
silhouettes, tone shading and depth cuing. In order to achieve interactive
rates they implemented a parallel algorithm which runs on several comput-
ers.
For the fuel cell simulations or for multiparameter data sets in general, NPR
can be used to create new visualizations by combining the extracted features
of different data sets and combining them into a new scheme. Another ad-
vantage of using NPR techniques for huge data sets is that lower resolution
data sets can be used to store the feature data only. For instance, if only
edge information is used, then only the gradients have to be stored to a
certain magnitude together with the spatial information and the intensity
value for these points. Huge compression ratios can be achieved using this
technique.

5.7.2 NPR for Flow Visualization

The possibilities of non-photorealistic rendering for flow visualization are
explored only briefly in the scientific community. Tory applied some ideas

114

5.7. Non-Photorealistic Visualization 115

like tone shading and shaded timeline strips [Tor01].
Animation can be used to visualize the motion and even the strength of
the flow field. Depending on the type of visualization, either objects can be
animated or textures. Both techniques would give a good understanding of
the global flow field, but one has to be careful with not to animate too much
at once.
Here, motion can be depicted without animation by using speedlines. Ma-
such et.al. [MSS99] showed how this can be effectively used. These speed-
lines can be attached to glyphs which usually visualize flow parameters, like
direction or magnitude, to enhance their expressiveness and to additionally
show the path of motion and hence the flow field. By virtually integrating
over the visualization, one can perceive a good understanding of the global
flow field. Instead of speedlines, one can also use motion blur and include
the glyph’s position from previous frames in the visualization. Here the vi-
sualization might integrate over five different time frames which are blended
and weighted together. The most current frame is weighted to contribute
most to the final image.
Figure 5.24 shows a classic flow visualization from a car repair manual
[Hoc97]. Here the flow of coolant through an engine is visualized through
arrows. For 2-dimensional visualization and eventually also for 3D visual-

Figure 5.24: Some Flow NPR

izations, painting and drawing techniques can be employed which use the
flow field as input for the stroke length and direction. The result would be
either sketches of the flow field, or even paintings. One example visualizing
this technique is the painting from Eduard Munch “Der Schrei”. While he
definitely did not use any scientific flow data, the result is similar to the
described method and also to line integrated convolution [CL93].

115

116 Chapter 5. Multiparameter Visualization

5.8 Conclusions

The two most challenging problems for the visualization of the fuel cell data
set are the size and the multi-parametric nature. While the last chapter
developed a new method and extended some existing techniques to be able
to interactively explore large volumetric data sets, this chapter investigated
the possibilities to interact with more than one data set at a time. Multi-
parameter visualization is a difficult topic and differs for each data set. The
advantage of including more than one data set in the visualization is that
sometimes features are only visible when one can directly compare several
data sets with each other.
This chapter explained some existing multiparameter techniques and devel-
oped some new ideas which were shown to be useful for the visualization of
the fuel cell data set. In Section 5.2 some classic techniques where presented
which can directly be applied to the fuel cell data. These methods, which
are derived from unimodal data visualization have some limitations and can
only be used to a certain degree. This led to the next section where some
standard multiparameter techniques were presented. In this section, first
the data set was analyzed and it was shown which parts of the fuel cell data
are important for the visualization and which data sets can be skipped due
to inherent coherency. The next section highlighted some specific problems
for time-varying data sets. Here not only do several data sets have to be
visualized, but also the temporal component and the development over time
has to be considered for some data sets. The ability to focus on some regions
of a data set while still displaying the other parts as context information is
important. Which techniques are available and can be used for the fuel cell
data are described in Section 5.5. An option which is not heavily exploited
yet in scientific visualization are higher dimensional visualization techniques
which were described in Section 5.6. Here the basic principles are explained
and how they can be utilized to use more than three dimensions in a vi-
sualization. The last section was dedicated to non-photorealistic rendering
techniques which can be applied to several problems from highlighting spe-
cific parts in the data to data compression.
One focus in this chapter, besides the presentation of useful techniques for
the fuel cell data set, was to develop techniques and ideas which can be used
to increase interactivity with the data sets. Here, some methods make use
of special Level-of-Detail for the data to increase the rendering speed. Other
methods, like NPR or hyperspace techniques, try to compress the available
information in the data set to make the visualization easier to understand.
The next chapter explains the results from this chapter and also from Chap-
ter 4 in more detail and highlights the advantages, but also the disadvantages
of the methods described here. The results are fortified by images as well as

116

5.8. Conclusions 117

some numbers if applicable. In the end of Chapter 6 some conclusions are
drawn and the usefulness of each technique is evaluated.

117

118 Chapter 5. Multiparameter Visualization

118

Chapter 6

Results and Conclusions

While the end of Chapter 4 and Chapter 5 already presented some conclu-
sions for the given chapter, the intention of this chapter is to present the
results in a more global context. This chapter will also be used to evaluate
some of the work for applicability to the given problems and compare the
results with other existing techniques.
The main topic of the thesis was the visualization of fuel cell simulations.
The difficulty for the visualization task is that the data sets can be huge in
size and multiparametric. These two problems were discussed and analyzed
in Chapter 4 and Chapter 5. Here the overall focus was on fast, expressive
visualizations with high frame rates and good image quality.
Chapter 4 combined some existing technologies and developed a new ap-
proach to visualize huge data sets on standard workstations at interactive
rates. In the beginning a better lattice was introduced which allows one
to store the samples more efficiently than the current CC lattice, (Chapter
4.1). The BCC lattice was used for static 3-dimensional data sets and al-
lowed to save 30 percent of the samples, while for time-varying data sets 50
percent of the samples could be discarded with the use of the D∗

4 lattice.
The resampling of a data set usually introduces some minor blurring, but the
advantage of the hexagonal lattice is that even with fewer samples the fre-
quency content is not damaged. After the hexagonal resampling, the data set
is analyzed for spatial and temporal coherency (Chapter 4.2). Unimportant
regions within the data set are discarded, where the entropy and the mean
value of this brick are below a certain threshold. After this segmentation
step, the remaining data is merged into larger bricks of the size of the avail-
able texture memory. This is performed in a way that homogenous regions
are merged together. The homogeneity criterion here is the importance,
the information content of the brick. After this merging, a multiresolution
representation of each brick is created using wavelets (Chapter 4.3). Lossy
compression results in a better compression ratio, but the frequency con-
tent is damaged and artifacts might be visible in the visualization. For real

119

120 Chapter 6. Results and Conclusions

lossless compression, the integer wavelet transform was used. However, the
degree of the compression ratio can be adjusted to also allow lossy compres-
sion for better compression ratios. After this pre-processing, the data can
be used for display (Chapter 4.4). Here common texture mapping hardware
is used where the data is loaded as 3D texture and rendered from back to
front. The data can be categorized using pre- and post-classification and
several different visualizations methods can be selected.
Chapter 5 was dedicated to the multiparametric nature of the fuel cell data
set. Here some existing techniques for the visualization of multiparameter
data sets were evaluated and there applicability for the visualization of the
fuel cell data was explored. Some new ideas were developed which can be
used to make the visualization more expressive and efficient. In the begin-
ning of Chapter 5 some general multiparameter techniques are discussed,
Chapters 5.2 and 5.3, and examples were presented on how these techniques
can be used to visualize the entire, or parts of the fuel cell data set. A very
effective and universal tool are the different lenses which were covered in
Chapter 5.3.6. Standard possibilities to display time-varying data sets were
presented in Chapter 5.4, while some more advanced techniques for higher
dimensional data visualization where discussed in Chapter 5.6. Applicable
for multiparameter data sets as well as static data sets is the use of focus and
context techniques which were introduced in Chapter 5.5. These methods
are very important to visualize local features of the data set while still show-
ing global context information. Non-photorealistic rendering techniques are
discussed in the end of Chapter 5. Here some methods are discussed which
can improve the expressiveness of the visualization as well as been used to
compress the contained information. This makes these techniques very at-
tractive for huge data sets, like the fuel cell simulations.
This Chapter is divided into two sections, which both present results and
comparisons for Chapter 4 as well as for Chapter 5. The first section shows
some achieved qualitative results and presents some screenshots from Chap-
ter 4 and explains the different available rendering techniques. After this,
some qualitative comparisons between the hexagonal and the Cartesian lat-
tice as well as with compressed and uncompressed data sets are presented.
The second part of this chapter discusses quantitative results and shows
running times of the algorithms and how many frames per second can be
achieved using these techniques. Here also some comparisons are shown in
the improvement of the memory efficiency by using the hexagonal lattice
and wavelet compression techniques. In the end of this Cchapter some con-
clusions are drawn for the multiparameter visualization of the fuel cell data
which were discussed in Chapter 5.

120

6.1. Qualitative Results 121

6.1 Qualitative Results

This section presents some qualitative results from the techniques developed
in Chapter 4 and Chapter 5 and is divided into two groups. First some re-
sults for general image quality are presented which demonstrate the achieved
rendering quality for the various visualizations and rendering styles. One
focus for the algorithm which was developed in Chapter 4 was to visualize
huge data sets. Here some compression techniques have been used which
are applied in a pre-processing step. While all of the techniques can be used
for lossless compression, minor blurring can occur due to the resampling.
Some parameters are also adjustable to perform lossy compression with bet-
ter compression ratios. This second section will be used to demonstrate the
achieved image quality, depending on the compression technique used.

6.1.1 General Image Quality

The renderer which was described in Chapter 4 can not only be used to ren-
der huge data sets at interactive rates. Also several different rendering tech-
niques and possibilities to classify the volumetric data were implemented. In
the following section, some of these techniques will be presented and com-
pared with existing algorithms.
The volume renderer which was implemented and which is also described in
Chapter 4.4 is able to handle Cartesian as well as both hexagonal data sets.
These data sets can be rendered with the focus either on accuracy or speed.
Figure 6.1 shows a screenshot of the application. Different methods of clas-
sification and shading have been implemented as well as several rendering
styles. The data set can be rendered as:

• direct volume rendering,

• iso-surface (with and without opacity),

• gradient-magnitude,

• maximum intensity projection, and

• X-Ray.

Independent of the classification technique used, the transfer functions for
colour and opacity can easily be defined using a dialog widget. In the follow-
ing, some results are presented to demonstrate the high quality of the visual-
izations. More information about the rendering can be found in Chapter 4.4
and also some implementation details in Chapter 7.3. The classification can
be performed in several different ways. The simplest technique for volume
rendering with texture mapping hardware is pre-classification using either
RGBα volumes or a luminance volume and OpenGL lookup tables (Section
4.4.6). Figure 6.2 shows a rendering of the engine data set together with
the dialog which is used for classification. The reconstruction artifacts are

121

122 Chapter 6. Results and Conclusions

Figure 6.1: vuRenderer with frog data set

coloured red, the engine itself is green and the parts which are a made of a
different alloy are depicted blue. Better classification can be achieved when

Figure 6.2: Pre-classification of the engine data

using texture shader and register combiner to perform post-classification.
Figure 6.3 shows two images of the frog data set which were classified using
dependent textures. Shading can be used to extend this technique and to
aid in the 3D impression of the rendering. Figure 6.4 shows a rendition of
the engine which was shaded using register combiner (Section 4.4.6). The

122

6.1. Qualitative Results 123

Figure 6.3: Post-classification of the frog data

Figure 6.4: Shading of the engine data

gradients which are used for shading can also be used to generate an opacity
transfer function which is dependent on the length of the gradient. This is
very useful to highlight those regions in the data which change most, i.e.
where the gradient is largest. Figure 6.5 shows two examples of this method
with the engine data set and the tomato. This technique can be used with
pre-processing as well as with dependent textures. The latter technique re-
quires one additional 3D texture with the gradient length information to
perform the computation within the register combiner [MGW02]. With
this gradient magnitude classification and an appropriate transfer function,
NPR like volume rendered images can be produced, as can be seen in Figure
6.6. Here the foot data set was rendered using this technique. By using
different blending equations and enabling the alpha test, other rendering
techniques like iso-surfaces, X-Ray, or the maximum-intensity projection

123

124 Chapter 6. Results and Conclusions

Figure 6.5: Gradient magnitude rendering,
engine a) and tomato b)

Figure 6.6: Non-photorealistic volume
rendering of the foot

can be simulated. In the following each of these techniques shall be pre-
sented and discussed using a few examples. Non-polygonal iso-surfaces can
be rendered by enabling the alpha test which only allows fragments which
are at or above a certain threshold to pass (Section 4.4.6). Figure 6.7 shows
the engine data set rendered with an iso-value of 170 and the silicon data
set rendered with an iso-value of 40. Both images are rendered with shading
enabled. Especially for medical data sets the display of the data as X-Ray or
maximum intensity projection is very useful. With these techniques regions
inside the data set which have a high value become immediately visible. The
two techniques can be simulated by using different blending equations for

124

6.1. Qualitative Results 125

Figure 6.7: Iso-surfaces, engine a) and silicon b)

the compositing of the sampling slices (Section 4.4.6). Figure 6.8 shows the
UNC-Brain rendered using X-Ray and maximum-intensity projection.

Figure 6.8: UNC Brain as X-Ray a) and using
maximum intensity projection b)

6.1.2 Compression Quality

The last section only covered general image quality which can be achieved
by rendering standard medium sized Cartesian data sets. In order to han-
dle huge data sets, some techniques have been employed to compress the
data sets in size. These methods can be divided into two groups. The first
performs a resampling of the entire data set onto a more efficient lattice
(Section 4.1) and the second one is a multiresolution compression technique
(Sections 4.2 and 4.3). With the resampling of Cartesian data sets onto the
BCC lattice in 3D and the D∗

4 lattice in 4D, one can save 30, or 50 percent
of the samples without impairing the frequency domain. This resampling is
performed lossless when the signal is hypercubic bandlimited. Some minor

125

126 Chapter 6. Results and Conclusions

smoothing might occur due to the resampling. While the focus for the vi-
sualization is on speed, some minor quality artifacts may be observed. This
depends on the goal of the visualization and can be influenced during the
creation of the data set as well as during the rendering. The second opti-
mization step is the pre-segmentation of the data and the multiresolution
compression using wavelets. Both techniques can be adjusted to perform a
real lossless compression of the data set.
In the following some quality comparisons are presented for different data
sets using these compression techniques. First a comparison of the BCC lat-
tice with the CC lattice is presented. Figure 6.9 shows the lobster data set
rendered in CC and BCC. The first image, Figure 6.9 a), is rendered using

Figure 6.9: Lobster, a) CC, b) BCC, c) half, d)
one

the CC lattice, while all other images are produced using the lobster data
set resampled onto the BCC lattice. Here Figure 6.9 b) shows the data set
in the full resolution BCC with both cubic textures interleaving by 1

2 in all
directions. Figures 6.9 c) displays the BCC data set rendered using only half
the resolution of the BCC lattice with one of the two textures, while Figure
6.9 d) renders the data with all two textures, but without interleaving.
If the data is time-varying, then the D∗

4 lattice can be used. Figure 6.10
shows a comparison of the CC lattice with the D∗

4 lattice. It shows the
kidney data set rendered at frame 49 for the CC lattice and 69 for the BCC
lattice. In this example, Figure 6.10 a) is generated using the CC lattice with
standard pre-classification. Figure 6.9 b) is rendered using the D∗

4 lattice.

126

6.1. Qualitative Results 127

Figure 6.10: Kidney data frame 49/69, a) CC,
b) D∗

4 , c) BCC

The used texture is eight times smaller, because the next smaller possible
texture size could be used. This results also in a eight times faster interac-
tion if the time slider is used and a new frame is selected. For comparison,
Figure 6.9 c) shows the same time frame, but correctly rendered as BCC
data set. Here the two time frames from before and after are included as
well and cubic interpolation is used to ensure that both textures are at the
same point in time (Chapter 4.1). This second cubic texture is also shifted
by 1

2 in all directions. Further to the hexagonal lattices, wavelets were used

Figure 6.11: Skull data, a) (1,1) T = 1.5, b)
(2,2) T = 1.5, c) (4,2) T = 1.5

to build a multiresolution representation of the data set as well as to com-
press the data to store the data more efficiently on disk. Figure 6.11 shows
a comparison for the different compression quality that can be achieved by
using different wavelet filters. The skull data set was soft thresholded and
rendered using the following wavelets (1,1) and with (2,2) and (4,2) (see
Chapter 4.3.1). The decomposition depth was one level. The differences for

127

128 Chapter 6. Results and Conclusions

this compression ratio are not very big, but the image quality increases from
a) to c). This can be best seen around the teeth section. These wavelets
also have a different storage requirement, as can be seen in the next section,
where quantitative results are presented.
The wavelet technique which was used allows a lossless as well as a lossy
compression of the data. Figure 6.12 shows a comparison of different com-
pression ratios, from lossless, Figure 6.12 a) to a threshold of T = 25.0.
The appendant memory requirement for the storage can be seen in the next
section.

Figure 6.12: Skull data (1,1), a) T = 0.0, b)
T = 1.5, c) T = 5.5, d) T = 25.0

6.2 Quantitative Results

The main problem with rendering huge data sets is their size. Some tech-
niques have been used in this implementation to make the rendering more
efficient. While the last section showed some visual results of the applied
techniques, this section presents some quantitative results. Very important
for compressing data sets is that the visual quality does not degrade too
much. All compression techniques which were used can be set to lossless,
i.e. one can construct the original data set from the compressed version.
However, for most data sets some high frequencies can be discarded without

128

6.2. Quantitative Results 129

impairing the visual quality of the visualization. The last section showed
some examples.
All rendering and compression has been performed on an Intel Xeon 2.4
GHz with 1 GB of main memory and a nvidia GeForce4Ti 4600 graphics
accelerator. Table 6.1 gives an overview of the size of the data sets which
were used, while Table 6.2 shows the time which was needed to convert and
compress these data sets. As can be seen in Table 6.1 the size of the data

Data set Size CC Size BCC
Nucleon BCC 41× 41× 41 29× 29× 58
Lobster BCC 301× 324× 56 213× 229× 79
Statue Leg BCC 341× 341× 90 241× 241× 127
Engine BCC 256× 256× 128 181× 181× 181
UNC Brain BCC 256× 256× 145 181× 181× 205
Kidney D∗

4 90× 90× 80× 64 63× 63× 56× 90

Table 6.1: Data set sizes

sets decreased in two or three directions and increased in one direction. Ta-
ble 6.2 shows the pre-processing time which was needed to convert the data
sets from Cartesian grid to BCC or D∗

4. This pre-processing needs to be ex-
ecuted only once, unless some compression parameters need to be changed.
All data sets which are seen in Table 6.1 were transformed to the BCC or the

Data set Time (total) Time (Hex) Time (Wavelet)
Nucleon BCC 0.66 0.62 .02
Lobster BCC 58.0 54.9 8.5
Statue Leg BCC 112.6 106.4 5.7
Engine BCC 93.5 87.8 5.2
UNC Brain BCC 116.1 109.6 5.9
Kidney D∗

4 976.9 967.9 8.5

Table 6.2: Pre-processing time (in seconds)

D∗
4 lattice and then refit to the next 2n texture size for OpenGL. Currently

all 3D textures have to be specified as 2n in size. This will change soon
with future implementations of OpenGL, which will allow the specification
of arbitrary 3D texture sizes. However, until then some savings which are
gained through the conversion to the hexagonal lattice can not be fully used
because the data has to be embedded in the next bigger texture. Never-
theless, because the BCC data needs fewer samples, the remaining voxels
for the next texture resolution are zero padded. This data can be encoded
very efficiently and the resulting data size is usually smaller than the regu-
lar Cartesian. Additionally, because the BCC lattice has fewer samples, also
fewer slices are needed to resample the volume which increases the overall
performance. Table 6.3 shows the results for the hexagonal conversion in

129

130 Chapter 6. Results and Conclusions

Data set MB fps.
Nucleon CC 68 kb 73.2
Nucleon BCC 48 kb 82.6
Lobster CC 5.4 MB 13.1
Lobster BCC 3.8 MB 9.4
Statue Leg CC 10.4 MB 27.6
Statue Leg BCC 7.4 MB 15.06
Engine CC 8 MB 31.6
Engine BCC 5.9 MB 7.1
UNC Brain CC 9.5 MB 20.88
UNC Brain BCC 6.7 MB 7.6
Kidney CC 40 MB 25.26
Kidney D∗

4 20 MB 28.16

Table 6.3: Data sets CC vs. BCC

memory space and gives performance results in frames per second (fps). As
expected, the savings which are gained through the conversion are 30 per-
cent for the BCC lattice and 50 percent for the D∗

4 lattice. Further reduction
in the data size can be accomplished by using compression techniques. For
this implementation, the integer wavelet transform is used and the data sets
can be compressed using the following CDF-filters [CDF92]:

• (1,1), (1,3), (1,5),

• (2,2), (2,4), (2,6),

• (4,2), (4,4) and (4,6).

After the decomposition of the data set, the high frequencies are thresh-
olded and encoded using RLE. Table 6.4 shows some results for two data
sets with three selected wavelets. The wavelet decomposition is performed
three levels deep and different thresholds were used, as can be seen in Table
6.4. Some of the high frequencies can be discarded in order to achieve a
higher compression ratio. This results in less detail information, and the
RLE algorithm can preform longer runs. However, due to the loss of infor-
mation, the original signal can not be reconstructed entirely. Examples can
be seen in Figures 6.11 and 6.12 in Section 6.1.2.
As can be seen from Tables 6.1 to 6.4 the original data sets can be stored
very efficiently using the described techniques. The increase in rendering
performance is not yet as visible for all data sets, due to the requirement of
using textures with the size of 2n.
For time varying data sets it is very important to be able to interactively
change the current frame. Even without the additional optimizations which
were discussed in Chapter 4.4.4, one can directly benefit from the D∗

4 lat-
tice. Table 6.5 shows the time which is needed to load another time frame
and display it. The qualitative results from the previous section and also

130

6.3. Multiparameter Visualization 131

Wavelet Threshold Frog CC Skull CC
uncompressed 30.9 MB 16.0 MB
(1,1) 0.0 532.6 kb 701.1 kb
(1,1) 1.5 495.2 kb 419.5 kb
(1,1) 5.5 361.2 kb 184.5 kb
(2,2) 0.0 586.6 kb 705.6 kb
(2,2) 1.5 532.9 kb 534.7 kb
(2,2) 5.5 383.3 kb 233.4 kb
(4,2) 0.0 753.9 kb 696.6 kb
(4,2) 1.5 700.2 kb 696.4 kb
(4,2) 5.5 662.4 kb 696.5 kb

Table 6.4: Data sets (compression)

Data set Frames Time (seconds)
Kidney CC 64 0.12
Kidney D∗

4 90 0.018

Table 6.5: Time to change a frame

the quantitative results in this section have shown the usefulness and the
applicability of the described approach. Using more efficient grids to store
the data sets and adaptive compression techniques together with a pre-
segmentation of the data set can decrease the size of the data by a large
magnitude without degrading the visual quality of the visualization.

6.3 Multiparameter Visualization

Chapter 5 discussed possibilities for the multiparameter visualization of the
fuel cell data set. While the focus in Chapter 4 was on fast visualization
of huge time-varying data sets, the focus in Chapter 5 was on how to cre-
ate expressive images from more than one data set. All techniques where
explained and described using the fuel cell data, but are also applicable for
the visualization of other multiparameter data sets.
Some selected techniques have been implemented, as can be seen in Figure
6.13. Figure 6.13 shows a little demo program which was used to experiment
with different, commonly used visualization techniques. The visualized data
set is only small in size, no special optimizations were necessary to increase
the rendering performance. Possible visualization techniques are:

• direct volume rendering with different rendering functions,

• arbitrary data slicing (colour/contour),

• streamlines,

• 3D glyphs,

131

132 Chapter 6. Results and Conclusions

Figure 6.13: Simple fuel cell visualization

• hedgehogs, and

• iso-surfaces.

The implemented approach is the layer concept which was described in
Chapters 5.2 and 5.3. Here one has the possibility to chose one of the
six data sets which are available for the fuel cell data and visualize this one
using an appropriate technique. One can use several different visualizations
of one data set and blend them together, or different data sets and combine
these to the final visualization. Chapter 7.1 shows some more screenshots
and also some implementation details.
Other covered techniques are classic multiparameter visualization methods,
like scatterplots, hierarchy, shadow projections, probing, special lenses and
customized glyphs. Most of these techniques are described in theory and an
possible application for the fuel cell data is outlined. Here, the special lenses
are a very universal tool which allow a great degree of freedom and which
can be combined with other techniques in several ways. But also higher-
dimensional data visualization and non-photorealistic rendering techniques
have some qualities which are useful for the visualization of the fuel cell data
set.

132

Chapter 7

Design and Implementation

This Chapter is used to present some implementation details and to give
more insight into the design of the implemented programs. The chapter is
basically divided into two parts.
The first section shows a program which was used to visualize a small fuel
cell data set using common visualization techniques. The program was de-
signed to demonstrate the possibilities of these methods and how they could
be adapted to visualize fuel cell simulations. One goal in the design process
was also that this program can be used as a framework where additional
visualization techniques can easily be implemented and evaluated.
Sections 7.2 and 7.3 provide further information for the implementation of
the algorithms which were developed in Chapter 4. The method which
is used to visualize huge time-varying data sets can be split into a pre-
processing step and the final render part. Here, section 7.2 shows detailed
information about the implementation of the different compression tech-
niques and how the data is stored and organized on disk. Section 7.3 explains
the implementation of the actual rendering algorithm which uses the previ-
ously generated compressed data sets. Here, special attention is payed to
interactive volume rendering using OpenGL hardware and how the different
classification and rendering techniques are actually implemented.

7.1 Simple Fuel Cell Visualization

The program which is presented in this section was implemented to test
the applicability of some general visualization techniques for the fuel cell
data set. The data set which was used for this program is very small in
size (13 × 11 × 100), and hence no optimization techniques were necessary
to improve the interactivity. The fuel cell data contains the following data
sets:

• concentration of oxygen O2,

133

134 Chapter 7. Design and Implementation

• concentration of hydrogen H2,

• pressure p,

• temperature T ,

• velocity (vx, vy, vz), and

• concentration of water H2O.

A more detailed description can be found in Chapter 2. The goal for this
program was to build a demo application which can be used for discussions
with mathematicians that generated the simulation data. Figure 7.1 shows
a screenshot of the application displaying different visualization techniques.
Another focus of the development of this program was to build a framework

Figure 7.1: Simple fuel cell visualization

which could be used as a Rapid-Prototyping Environment to implement
new visualization ideas for multiparameter data sets. The user interface
was implemented using Qt [AS92] and build using the Qt Designer. For the
graphic part, the Visualization Toolkit from Kitware Inc. [SMLS98] was
chosen which allows one to easily implement all the necessary visualization
techniques. It can also be used to write the program in a way that it can be
easily extended with new visualization techniques.
To improve the user interface an extension to the Qt interface was used
which allows a better MDI framework [Bre99]. The program enables one
to either use one single method for one data set, or to combine different
visualization techniques using the layer principle with one another (Chapter
5.2). Here, MDI can be used to compare several different combinations and
to chose the one which presents the underlying information best.
The implemented techniques are:

134

7.1. Simple Fuel Cell Visualization 135

• direct volume rendering with different blending modes,

• arbitrary slicing with colour and/or contouring,

• streamlines,

• 3D glyphs,

• hedgehogs, and

• iso-surfaces.

All techniques can be used with all data sets. Some methods also allow
the combination of two different data sets. As an example, one can use the
concentration of oxygen for colour mapping and the temperature data set
to generate the geometric primitive which is used to map the information
into visible form. Figures 7.2 and 7.3 show some more screenshots of the
program. In Figure 7.2 one can see an example for volume rendering where
the data set which describes the concentration of oxygen is displayed. Sev-
eral different rendering parameters can be specified and transfer functions
for colour and opacity can be defined using a dialog box which can be seen
in Figure 7.1. In a pre-processing step, for all scalar data sets, the gradient

Figure 7.2: Direct volume rendering

is computed, so that these data sets can also be used for flow visualization,
Figure 7.3. Also, from the vector data set, the magnitude is extracted and
can be used for the visualization as well. Figure 7.3 shows the the flow
data set rendered using hedgehogs. Hedgehogs are, as streamlines and 3D
glyphs, used to depict flow information. Unlike 3D glyphs, hedgehogs are
simple line segments which point in the direction of the flow and are scaled
and coloured depending on the flow magnitude. Figure 7.3 shows the flow
data, which is scaled and coloured using the oxygen concentration.
Other very common and supported visualization techniques are slicing, where
an arbitrary slicing plane is used to extract information on a 2D image.
This information can be presented using a colour scale and/or contour lines.
Streamlines are also used to describe flow information. Here, particles are
set into the data set which are traced and their path is visualized. Very im-

135

136 Chapter 7. Design and Implementation

Figure 7.3: Hedgehogs

portant for the fuel cell data set is also the extraction of iso-surfaces. This
contour information can be used to display the different layers of a data set
and to highlight the changes in intensity. This is also interesting for the
flow data. Some of these techniques are depicted in Figure 7.1 as well as
described in more detail in Chapters 5.2 and 5.3.
The next section describes shortly some interesting implementation details.

7.1.1 Implementation Details

The user interface was designed that it can be easily extended with new
visualization techniques. One would just have to add a new tab-box and
implement the graphics related part using the VTK. The interface is also
small in size which helps to compare several different renditions on one screen
to evaluate their applicability. For the design of the user interface, the Qt
designer was used which built a base class of the gui where one only had to
derive a new class from to implement all gui related methods and to update
the VTK rendering pipeline.
The VTK works in a way that one creates a rendering pipeline which is
executed every time a new image has to be created. This can occur when
the canvas was damaged or the data has changed. All visualizations are
implemented as classes in C++ and can be added to and removed from the
rendering pipeline as can be seen in Example 7.1:

viewer−>GetRenderWidget()−>GetRenderer()−>AddActor(volume);
viewer−>GetRenderWidget()−>GetRenderer()−>AddActor(glyph);
viewer−>GetRenderWidget()−>GetRenderer()−>RemoveActor(contour);

Example 7.1: Enabling/Disabling visualizations

In the above example one can see how visualizations can be enabled or
disabled using the VTK. This allows an easy implementation of the layer
concept where several different visualizations can be blended together (see
Chapter 5.2). In this example, iso-surfaces are disabled and volume render-
ing and 3D glyphs are turned on.

136

7.2. Volume Compression 137

Example 7.2 shows a small part of the actual rendering pipeline. Here the
part which is responsible for the volume rendering is set up:

opacityTransferFunction = vtkPiecewiseFunction::New();
opacityTransferFunction−>AddPoint(0.1, 0.0);
...

colorTransferFunction = vtkColorTransferFunction::New();
colorTransferFunction−>AddRGBPoint(0.1, 0.3, 0.3, 1.0);
...

volumeProperty = vtkVolumeProperty::New();
volumeProperty−>SetColor(colorTransferFunction);
volumeProperty−>SetScalarOpacity(opacityTransferFunction);
...

compFunction = vtkVolumeRayCastCompositeFunction::New();
compFunction−>SetCompositeMethodToClassifyFirst();

volumeRayCastMapper = vtkVolumeRayCastMapper::New();
volumeRayCastMapper−>SetInput(volumeData);
volumeRayCastMapper−>SetVolumeRayCastFunction(compFunction);

volume = vtkVolume::New();
volume−>SetMapper(volumeRayCastMapper);
volume−>SetProperty(volumeProperty);

Example 7.2: Volume rendering using the VTK

Example 7.2 only shows a small part of the pipeline to set up the volume
rendering. First the two transfer functions for opacity and colour are created
which are later assigned to the volume property that handles all the volume
attributes. Here one can also define characteristics for shading and lighting.
Next a composite function is created and assigned to the ray caster which
specifies the used ray function (Chapter 3.1.4). Here, also the data set is
assigned to the ray caster. This class performs the actual volume rendering.
The volume which is defined next handles all the events and initiates the
rerendering if necessary.
Some image processing is also performed and used in a pre-processing step
to compute the gradient information. The data sets can also be low-pass
filtered using a gaussian filter to achieve smoother images. Because all data
sets have a different data range and type, they need to be resampled in
the range of 0 to 255. Therefore, a simple VTK class was implemented to
perform this task.

7.2 Volume Compression

The rendering pipeline which was developed in Chapter 4 can be divided
in two parts. This section will be used to explain the pre-processing step
in which the data set is resampled onto a more efficient grid to save mem-
ory space (Section 7.2.1). After the resampling, the resulting data is pre-
segmented into regions of equal importance (Section 7.2.2). Unimportant

137

138 Chapter 7. Design and Implementation

parts of the data sets are discarded. When this is finished, each brick is
compressed using either wavelets (Section 7.2.3). The detail coefficients are
thresholded depending on the importance of the brick and encoded using
RLE and finally stored onto disk (Section 7.2.4).
Figure 7.4 shows a screenshot of the compression utility. It allows to import
any kind of data set which will be first converted to unsigned char. On the
left side some widgets can be seen which allow to specify information for the
data import. Below this menu and on the right side are other widgets where
one can define features for the conversion to hexagonal grids, compression
and bricking. A progress bar on top of the application informs about the
advance of the time-consuming process. The interface is designed and imple-

Figure 7.4: vuCompressor

mented using Qt and QtDesigner [AS92]. A first version was implemented
using wxWindows [wxw92], but later discarded because of its inflexibility
in comparison to the Qt library.

7.2.1 BCC Grids

After a data set is loaded and converted to byte data, it will be resampled
onto the hexagonal lattice. Static data sets are resampled to BCC versus
time-varying data sets which are resampled to D∗

4, see also Chapter 4.1 for
more details. The conversion is simply done by using cubic interpolation

138

7.2. Volume Compression 139

filters. Example 7.3 shows a code snippet which is used to resample a 4D
Cartesian data set into the D∗

4 lattice

// Compute resolution of hexagonal data set
m xDim = int(double(xDim)/T);
m yDim = int(double(yDim)/T);
m zDim = int(double(zDim)/T);
m tDim = int(double(tDim)/(T∗0.5));
unsigned long vols = m xDim∗m yDim∗m zDim;

for (int t=0; t < m tDim; t++)
for (int z=0; z < m zDim; z++)

for (int y=0; y < m yDim; y++)
for (int x=0; x < m xDim; x++)
{

/∗Find out the x, y, z and t coordinates of
the data point in the rect grid∗/
double xRect = T ∗ (x + (t%2)∗0.5);
double yRect = T ∗ (y + (t%2)∗0.5);
double zRect = T ∗ (z + (t%2)∗0.5);
double tRect = 0.5∗T∗t;
//Interpolate the new data point
m Data[x+(y+z∗m yDim)∗m xDim+vols∗t] =

getCart(xRect,yRect,zRect,tRect);
}

Example 7.3: Resampling to D∗
4

In this example first the new dimensions of the data set are computed. The
x, y and z axes decrease by T =

√
2 and the time axes increases by

√
2. Then

for each of the new data points the corresponding location in the Cartesian
data set is computed and interpolated using the function getCart(x, y, z, t).
The resampling to BCC is similar, except that the algorithm only loops over
x, y and z and that the sampling occurs on different positions.

7.2.2 Subdivision

After the data set is resampled onto a hexagonal lattice, it is eventually
subdivided into smaller bricks if necessary. If the data exceeds the capac-
ity of the available texture memory, then a pre-segmentation and bricking
algorithm is used to break down the data set into smaller pieces. A more
detailed description can be found in Chapter 4.2. For the bricking, two tech-
niques are available. The first one subdivides the data by uniform splitting
the volume into the biggest possible texture sizes. This technique can be
seen in Example 7.4.

void VolumeRoot::SubdivideSimple()
{
// compute the biggest texture size ...
unsigned short bg tex = 128;

139

140 Chapter 7. Design and Implementation

unsigned int counter = 0;
unsigned short xPos, yPos, zPos;

// allocate memory for each brick...
sub data = (SubVolume ∗)malloc(number of bricks ∗ sizeof(SubVolume));

// subdivide the volume into biggest possible textures
for (int x=0 ; x<texBigX ; x++)

for (int y=0 ; y<texBigY ; y++)
for (int z=0 ; z<texBigZ ; z++)
{

xPos = x∗(bg tex−1);
yPos = y∗(bg tex−1);
zPos = z∗(bg tex−1);
sub data[counter] = SubVolume((GLint)counter, this,

bg tex, bg tex, bg tex , 1.0);
sub data[counter].setData(xPos, yPos, zPos, bg tex, bg tex, bg tex);
counter++;

}

Example 7.4: Simple bricking

In this example first the biggest possible texture is computed. For this
simple example it is given, but usually computed by querying the available
graphics hardware. The biggest texture size depends also on the size of the
frame buffer and the rendering method used. If the gradient information is
not needed, the texture can be four times larger. After this the number of
bricks is computed and memory space to hold the required information for
the sub volumes is allocated. Then every brick is initialized and the textures
are loaded overlapping to avoid boundary artifacts.
The complex bricking is not shown here, as this would be too big and com-
plex to fit here. In complex bricking, first a volume is computed which
exhibits the temporal changes of a time-varying data set. After this, the im-
portance for several small bricks is computed and evaluated. Bricks which
are below a certain threshold are not included in the visualization. All other
bricks are merged together depending on their importance to increase the
efficiency. This importance is also used later for the wavelet decomposition
and the determination of the Level-of-Detail.

7.2.3 Compression and Multiresolution

After the data has been processed and all sub volumes are created, each brick
is further compressed and decomposed using wavelets. The implemented
wavelet approach uses the lifting scheme which can be used to perform a
real lossless integer wavelet decomposition. For the implementation, the
Waili package [UVWJ+98] was used.
Examples 7.5 and 7.6 show how the wavelet compression is performed.

140

7.2. Volume Compression 141

wavelet = IWT3d(1,1);
wavelet.setData(cData, xdim, ydim, zdim, compressionRatio);
wavelet.compress(level);

Example 7.5: Wavelet decomposition I

Example 7.5 shows simply how the wavelet is created and how the data is
assigned prior to the compression. This is performed for each sub volume.
The (1,1) wavelet in this example is the simple Haar wavelet for integer
lifting.
Example 7.6 shows how the wavelet decomposition is actually performed.

void IWT3d::FastWaveletTransform()
{

unsigned int id = wave−>GetID();

TransformDescriptor td2d[] = {{TT ColsRows, id}};
TransformDescriptor td1d[] = {{TT Rows, id}};

// transform xy slices ...
for(unsigned short z=0 ; z<zMax ; z++)
{

NTChannel ch(xMax, yMax);
copyXYSlice(ch, z);
LChannel ∗lch = ch.Fwt(td2d, 1);
IcopyXYSlice(∗lch, z);
delete lch;

}

// transform along z axis ...
for(unsigned short z=0 ; z<zMax ; z++)
{

NTChannel ch(zMax, yMax);
copyZSlice(ch, z);
LChannel ∗lch = ch.Fwt(td1d, 1);
IcopyZSlice(∗lch , z);
delete lch;

}
}

Example 7.6: Wavelet decomposition II

In example 7.6 first the xy slices are compressed followed by the z-axis. The
data is assigned into a non-transformed NTChannel and converted using the
fast wavelet transform into a wavelet transformed LChannel. This wavelet
decomposition is repeated on the low frequency volume depending on the
assigned level depth, as can be seen in example 7.5. Every time frame of a
time-varying data set is compressed in this manner, but here, the compres-
sion ratio can be adjusted, depending on the information contained in this
brick at this point in time.

141

142 Chapter 7. Design and Implementation

7.2.4 Encoding and Storage

After the data is decomposed into low and high frequencies the low resolu-
tion volume is stored uncompressed on the disk, and the remaining detail
information is written successively into the same file. This way, first the low
resolution volume can be accessed for fast preview and then successively the
volume is reconstructed to the required resolution. Example 7.7 shows the
RLE algorithm used.

int SubVolume::RLECompress(ofstream& fout, byte ∗input, int length, int flag)
{

int index;
byte pixel ;
int out = 0;
int count = 0;
byte ∗writeData = (byte ∗)malloc(length ∗ 1 < < flag ∗ sizeof(byte));

while (count < length)
{

index = count;
pixel = input[index++];
while (index < length && index − count < 127 && input[index] == pixel)

index++;
if (index − count == 1)
{

while ((index < length) && (index − count < 127) &&
((input[index] != input[index−1] || index > 1 &&

input[index] != input[index−2])))
index++;

while (index < length && input[index] == input[index−1])
index−−;

writeData[out++] = (byte)(count − index);
for (int i=count ; i<index ; i++)

writeData[out++] = input[i];
}
else
{

writeData[out++] = (byte)(index − count);
writeData[out++] = pixel;

}
count=index;

}

// save file
fout .write((byte ∗) writeData, out);
writeData = 0;
return(out);

}

Example 7.7: Run Length Encoding

142

7.3. Volume Rendering 143

In this example the input data set which is encoded and a pointer to the
file are given as input. The implementation is the same as described earlier
in Chapter 3.3.1, except this method only searches for long runs in one
direction. After the encoded data is written into the file, the length is
returned to the root volume and stored in a header file for later access when
the volume is reconstructed during the rendering.

7.3 Volume Rendering

The last section showed in a few selected code examples how the pre-
processing step is performed. This section describes how this data is used
for the final visualization. Figure 7.5 shows a screenshot of the application
visualizing the bonsai tree data set. The main widget of this application is

Figure 7.5: vuRenderer with bonsai tree

the render window on the left side. Below this one is a small slider which
can be used to manually adjust between either high quality or fast interac-
tion. Section 7.3.3 will explain more on this. On the right are some buttons,
checkboxes and slider which are used to load a data set and to change some
rendering parameters. Here a different transfer function can be applied as
well as a different rendering style, like iso-surfaces or mip. The bottom right
corner shows the rendering time in milliseconds and allows a benchmark
which reports in frames per second.
As with the vuCompressor, this interface is also implemented using Qt and
the QTDesigner [AS92]. In the following some small code examples are
presented on volume rendering using 3D textures, simple classification and

143

144 Chapter 7. Design and Implementation

shading and how Level-of-Detail can be included to increase the perfor-
mance.

7.3.1 Rendering

This section is to demonstrate how 3D textures can be employed for volume
rendering using texture mapping hardware. In this section it is shown how
the data set is loaded and rendered, while the next section demonstrates
how simple classification and shading can be performed. Example 7.8 shows
how a 3D volume can be load a s 3D texture.

glActiveTextureARB(GL Texture0 ARB);
glBindTexture(GL Texture 3D Ext, brick);
glTexParameteri(GL Texture 3D Ext, GL Texture Wrap S, GL Clamp);
glTexParameteri(GL Texture 3D Ext, GL Texture Wrap T, GL Clamp);
glTexParameteri(GL Texture 3D Ext, GL Texture Wrap R EXT, GL Clamp);
glTexParameteri(GL Texture 3D Ext, GL Texture Min Filter, GL Linear);
glTexParameteri(GL Texture 3D Ext, GL Texture Mag Filter, GL Linear);
glTexEnvi(GL Texture Env, GL Texture Env Mode, GL Replace);

glTexImage3D(GL Texture 3D Ext, 0, GL Color Index Ext, xdim, zdim, zdim,
0, GL Color Index, GL Unsigned Byte, (GLubyte ∗)texture);

Example 7.8: 3D Texture Loading

Here the data is loaded as 3D texture and can be accessed using the tex-
ture number which is stored in brick. Some parameters have to be defined
to correctly setup the texture. Example 7.9 demonstrates how the actual
rendering is performed.

glActiveTextureARB(GL Texture0 ARB);
glMatrixMode(GL Texture);
glBindTexture(GL Texture 3D Ext, brick);
glPushMatrix();
glLoadIdentity();
glTranslatef (.5 f , .5 f , .5 f);
glScalef (scale x , scale y , scale z);
glRotatef(objangle [1], 1. f , 0. f , 0. f);
glRotatef(objangle [0], 0. f , 0. f , 1. f);
glTranslatef (−.5f , −.5 f , −.5 f);

// blending ...
glEnable(GL BLEND);
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

for(int i=0 ; i<slices ; i++)
{

glBegin(GL QUADS);
glVertex3f(−150.f,−150.f,−150.f+offR+i∗(300.f−2∗offR)/(slices−1));
glVertex3f (150. f,−150.f,−150.f+offR+i∗(300.f−2∗offR)/(slices−1));

144

7.3. Volume Rendering 145

glVertex3f (150. f , 150. f,−150.f+offR+i∗(300.f−2∗offR)/(slices−1));
glVertex3f(−150.f , 150. f,−150.f+offR+i∗(300.f−2∗offR)/(slices−1));

glEnd();
}

Example 7.9: Volume Rendering

In this example first the matrix mode is changed to the texture mode where
the texture is rotated around the centre, depending on the current inter-
action. After this, blending is enabled and the texture is resampled by
slicing planes through the volume. The texture coordinates are created au-
tomatically, and setup in a pre-processing step. Each slice is tri-linearly
interpolated in hardware. To avoid ghosting artifacts, due to the clamped
texture, clipping planes have to be enabled and also rotated as the texture.
Other blending functions and the alpha test can be used to simulate different
rendering techniques. See also Chapter 4.4 for more details.

7.3.2 Classification

Classification is a very important step in volume rendering and can be per-
formed in hardware in pre- and post-classification (Chapter 4.4.6). Example
7.10 shows how simple pre-classification can be performed by loading the
transfer function as OpenGL colour table.

colourtable = (GLubyte ∗)malloc(1024 ∗ sizeof(GLubyte));
unsigned int counter = 0;
for (int i=0 ; i<256 ; i++)
{

colourtable [counter] = (GLubyte) i;
colourtable [counter+1] = (GLubyte) i;
colourtable [counter+2] = (GLubyte) i;
colourtable [counter+3] = (GLubyte) i;
counter += 4;

}

// download colourtable
glEnable(GL Color Table);
glEnable(GL Shared Texture Palette Ext);
glColorTable(GL Shared Texture Palette Ext, GL RGBA8, 256,

GL RGBA, GL Unsigned Byte, (GLubyte ∗)colourtable);

Example 7.10: Pre-classification

First a default transfer function is created which is simply a ramp function.
This transfer function is downloaded to the texture memory as a colour table
and accessed by the 3D texture via indices, see also the section before and
Example 7.8. The advantage is that this colour table can be changed very
fast and real time classification is possible also for huge data sets.
Shading can add a better perception of the 3 dimensionality of the visualized
object. Here the data set is loaded as a RGBα texture with the pre-computed

145

146 Chapter 7. Design and Implementation

and normalized gradient information stored as RGB values (see Chapter
4.4.6). Then simple shading can be performed using the texture environment
dot3 function, as can be seen in Example 7.11.

glTexEnvi(GL Texture Env, GL Texture Env MODE, GL Combine Ext);
glTexEnvi(GL Texture Env, GL Combine Alpha Ext, GL Replace);
glTexEnvi(GL Texture Env, GL Combine RGB Ext, GL DOT3 RGB Ext);
glTexEnvi(GL Texture Env, GL Source0 RGB Ext, GL Primary Color Ext);
glTexEnvi(GL Texture Env, GL Operand0 RGB Ext, GL SRC Color);
glTexEnvi(GL Texture Env, GL Source1 RGB Ext, GL Texture);
glTexEnvi(GL Texture Env, GL Operand1 RGB Ext, GL SRC Color);

Example 7.11: Simple shading

7.3.3 Level-of-Detail

Level-of-Detail is an important feature when interactivity and quality are
needed at the same time. LoD can be used such that the visual quality
is neglected and set to a lower resolution when interactivity is needed. At
the same time, the total performance increases and helps when navigating
through the data set. If the goal of interaction is reached, the better reso-
lution can be reloaded in background and used for further rendering.
LoD is used in the implementation in many ways. If a data set, or a new time
frame is loaded, then first the low resolution volume which was generated
using the wavelet decomposition, is loaded and displayed for fast feedback.
Then two threads for each brick are started which compute the next higher
resolution volume, as well as the gradient if needed. Example 7.12 shows a
small code sample.

void reconstructNextLevel()
{

// create threads
pthread t thread1, thread2;
int iret1 , iret2 ;

// Create independant threads
iret1 = pthread create(&thread1, NULL, (void∗)&computeNextWavelet, (void∗) level);
iret2 = pthread create(&thread2, NULL, (void∗)&computeGradient, (void∗) level);

...

}

Example 7.12: Multi threading

LoD is also used when the bricking technique has to be employed to visualize
data sets which do not fit in the texture memory. Here two situations can
be exploited for Level of Detail. First, bricks which are far away from the
camera can be rendered view-dependent using a smaller resolution and less
slices. Also, if the complex bricking, see Section 7.2.2 and Chapter 4.2, is

146

7.3. Volume Rendering 147

used then each brick can be rendered using a unique LoD which is computed
by evaluating the importance of the brick.

147

148 Chapter 7. Design and Implementation

148

Chapter 8

Summary and Future Work

The goal of this thesis was to examine the possibilities to visualize fuel cell
simulations. As these data sets are huge in size and multiparametric, two
areas of research had to be explored. Important for every visualization task
is the quality of the display as well as the interactivity which enables the
end user to explore the data to gather information. One is interested in
detecting features in the data and separating them from other structures.
This process can not be automated, but the software can provide tools to
support these features.
As withe the data set, also the thesis is split into two parts. The first part was
the development of a pipeline which allows one to interactively explore and
visualize huge time-varying volumetric data sets by using compression tech-
niques and exploiting commonly available graphics hardware. The second
part was the analysis of possibilities for the visualization of multiparameter
data sets which allows one to draw connections between several dependent
data sets.
This Chapter is divided into two sections. The first one briefly summarizes
the work and states the contribution of this thesis. The second part de-
scribes possibilities for future improvements and compares them with the
existing solution.

8.1 Summary

The goal of this section is to summarize the work and to review the thesis
shortly. In the end of this section the contributions of this thesis are pre-
sented and discussed. The intention behind the thesis was to improve the
existing visualizations for the fuel cell data sets and to develop appropriate
techniques for an expressive visualization. Even though the main focus was
on the visualization of fuel cell data, all methods can be used with other
data sets as well. Chapter 2 discussed some data sets used and explained

149

150 Chapter 8. Summary and Future Work

the fuel cell data set in more detail.
Chapter 3 was used as an introduction into the topic and explaind some
pre-requisites in signal and wavelet theory as well as in volume rendering.
These requirements were needed for the later discussions in Chapters 4 and
5.
Chapter 4 outlined a new rendering pipeline by combing existing technolo-
gies with new ideas into a volume rendering application. The presented
technique is able to render huge data sets at interactive rates on standard
commodity graphics workstations. The algorithm makes use of several com-
pression techniques and a pre-segmentation of the data set based on spatial
and temporal coherency which allows to decrease the size of the data set
by a large magnitude. Hardware assisted volume rendering is used for the
visualization of the data and adds to the interactivity as well as the quality
of the display. State of the art classification and shading techniques have
been implemented and extended.
In Chapter 5 several techniques suitable for the visualization of multiparam-
eter data sets were examined and explored. Although the focus was on the
visualization of fuel cell data sets, all techniques which were discussed are
also applicable to most other multiparameter data sets. Here some general
visualization goals were presented and adapted to the fuel cell data set. New
ideas were shown for higher dimensional data visualization as well as for the
use of non-photorealistic rendering techniques for volumetric data sets.
Qualitative and quantitative results were presented and discussed in Chap-
ter 6. The first section of this chapter shows some screenshots of different
data sets to evaluate the quality of the used rendering techniques. Here, also
comparisons are shown and discussed for the compression techniques used
with the BCC lattice and wavelets. The second part of Chapter 6 presented
the achievable compression ratios and with how many frames per second the
rendering could be performed.
Details for the implementation are shown and discussed in Chapter 7. Ba-
sically two applications have been implemented. The first one is used to
demonstrate some simple multiparameter visualizations for a small fuel cell
data set. This application was developed as a framework which allowed
an easy extension with other visualization techniques for evaluation. The
second application implemented most parts of Chapter 4. For better perfor-
mance the algorithm was split into two programs, one for the pre-processing
of the data set, and another one for the final rendering and visualization.
Both programs are discussed and several important functions are shown in
more detail.
Because the thesis covers several different fields of research, contributions
are made in divers areas and shall be discussed in the following. The big
advantage of the proposed approach from Chapter 4 is that it combines
several techniques which allows one to visualize huge volumetric data sets
at interactive rates. The method described allows the use of static as well

150

8.2. Future Work 151

as time-varying data sets. Most of these techniques were never combined
in similar way. The BCC lattice is very new to the scientific visualization
community. It was first introduced in 2001 for splatting volumetric data
sets [TMG01]. The D∗

4 lattice was only described once [NM02]. Neither
of these lattices has been used for hardware accelerated volume rendering
using texture mapping hardware.
The bricking algorithm which helps to render data sets which are larger than
the available texture memory is described in several publications. However,
the drawback of the standard technique is that it is performed in a brute
force way, by subdividing the entire volume. The bricking method which
was described in Chapter 4 first segments the data set regarding to the in-
herent coherency and only uses those regions which are really interesting for
the visualization. It also assigns a unique LoD to each brick which is used
during the rendering to increase the performance. Wavelet compression for
hardware based volume rendering is already described by three other groups.
However, the current implementations are not able to losslessly reconstruct
the original volume due to standard wavelet decompositions used. Wavelets
have never been applied to 3- or higher dimensional hexagonal data sets,
e.g. BCC and D∗

4.
The visualization of multiparameter data has mostly been discussed in the-
ory. Only a few selected examples have been implemented: a simple fuel
cell visualization which uses the layer principle and unimodal visualization
techniques and a simple non-photorealistic volume rendering tool which uses
the gradient magnitude and texture mapping hardware. Other contribution
here are the evaluation of the different visualization techniques for the fuel
cell data set, how they can be adapted and which combination would be
most beneficial for the visualization. The areas of higher dimensional data
visualization and the use of non-photorealistic rendering techniques for sci-
entific visualization purposes have been discussed in more detail. Volume
and iso-surface visualization using a hypercubic lattice is not thoroughly ex-
plored yet. Also the application of NPR techniques for data compression has
not been described yet but would be very useful for the interactive rendering
of huge volumetric data sets.

8.2 Future Work

As with most projects, there is always room for improvement. Even though
the presented approach yields promising results, it is just a start for the
interactive visualization of terascale volumetric data sets.
For the resampling of the data set onto a hexagonal lattice, cubic interpo-
lation has been used. Although these are good filters for resampling, better
results can be achieved by using interpolating higher polynomial filters or
spline interpolation. One could also apply image processing techniques prior

151

152 Chapter 8. Summary and Future Work

or past the sampling to enhance the signal. Here edge enhancement could
be used to antagonize the blurring which is introduced by the resampling.
The current used bricking method could be enhanced by using better filters
to compute the information content of a brick. Here wavelets can be used
to extract detail and structural information [GMR97]. The merging step
which is used to combine regions of similar importance together into larger
bricks is currently performed only in one predefined direction. Wavelets can
be used to suggest areas with a high homogeneity and which are suitable for
merging. One huge problem in multiresolution bricking is that neighbouring
bricks may not correctly overlap at the texture border if they use different
resolution levels. One solution is to include one slice of additional voxels,
but because all textures have to be 2n, the next texture size has to be used
and one uses an inferior texture with the same memory requirements. This
might change when the definition of arbitrary texture sizes also becomes
available for 3D textures.
Non-separable filters can be used for the wavelet decomposition to avoid di-
rectional aliasing and to achieve a better image quality. This would be very
advantageous for the BCC lattice, where one has nine axes of symmetry.
A good starting point here would be the adaptation of the butterfly inter-
polation scheme for BCC grids. Additionally different encoding techniques
could be used which might perform better than the used RLE algorithm.
Candidates here are Huffman coding or LZW encoding [Sal98].
To improve the rendering, capabilities of today’s and future graphics hard-
ware could be used more extensively. The BCC lattice could eventually be
sliced and resampled using vertex shaders. Also better classification could
be performed with higher dimensional transfer functions. By including the
first and/or the second derivative, one could use 3D dependent textures
which are available within the Texture Shader3 option [nvi01], and use the
approach from Kindlmann [KD98] to built good opacity transfer functions
automatically. Better interpolation filters to resample the texture should be
used as well. This would results in an increase in image quality by a large
number. With future graphics hardware which would support more than
four texture units and seven general combiners this might even be possible
with post-classification using dependent texture lookups in one single pass.
The visualization of multiparameter data sets would directly benefit from all
these improvements as they increase the performance and the display qual-
ity. The use of better graphical primitives might be helpful for the mapping
of the information into the visualization which would allow an easier and
faster recognition of the content. Here techniques from NPR can be used
to highlight specific areas and to focus on interesting parts of the data only.
As a side effect, these methods might be able to present the same informa-
tion with less data. Additionally, new ideas of interacting could be used to
faster explore the information within the data set. These methods would
depend on the type and additional information about the data set. And

152

8.2. Future Work 153

last, an improved user interface will help to easier find the information one
is seeking.

153

154 Chapter 8. Summary and Future Work

154

8.2. Future Work 155

155

156 Chapter 8. Summary and Future Work

156

List of Figures

1.1 Examples for information a), and scientific visualization b) . 4

2.1 Transportable fuel cell . 9

2.2 Principle of a PEM fuel cell 10

3.1 Transfer functions . 15

3.2 The dynamic heart phantom volume rendered without(a) and
with an applied colour table(b) 16

3.3 Spectral volume rendering with two different light sources . . 17

3.4 The dynamic heart phantom volume rendered with two dif-
ferent opacity tables . 18

3.5 Volume rendered foot with gradient magnitude transfer function 18

3.6 Slicing of volume data sets in medical imaging 19

3.7 The dynamic heart phantom rendered as iso-surface from gray
level 25 . 20

3.8 The dynamic heart phantom volume rendered with alpha
blending(a) and the maximum intensity projection(b) 21

3.9 Comparison of raycasting (a), splatting(b), shear-warp(c) and
texture mapping(d) . 22

3.10 Principle of wavelet compression 25

3.11 RLE Example . 27

3.12 Wavelet compression using different amounts of detail infor-
mation . 33

3.13 Standard wavelet decomposition of a 2-dimensional image . . 34

3.14 Non-standard wavelet decomposition of a 2-dimensional image 35

4.1 Delauny regions of the CC lattice a), and the BCC lattice b) 46

4.2 Bresenham for the CC lattice a), and the BCC lattice b) . . . 47

4.3 CC lattice a), BCC lattice b), and FCC lattice c) 49

157

158 List of Figures

4.4 D∗
4 lattice . 51

4.5 Simple bricking a), and artifacts b) 58

4.6 Overlapping textures . 58

4.7 Multiresolution bricking - a) full resolution, b) half resolution 59

4.8 Empty regions around the engine data set 60

4.9 Octree structure in volume rendering 61

4.10 Merging textures . 63

4.11 Volume rendering with 2D textures 71

4.12 Volume rendering with 3D textures 71

4.13 Volume rendering of a BCC lattice 73

4.14 Comparison CC lattice a), and BCC lattice b) 74

4.15 Level-of-Detail artifacts . 77

4.16 Polygonal, a), and non-polygonal iso-surface from the engine
data, b) and c), of iso value 170 79

4.17 Classification using lookup tables 82

4.18 Gradient magnitude classification a), and X-Ray b) 83

4.19 Post-classification . 83

4.20 Orthographic, a), vs. perspective projection b) 85

5.1 Simple multiparameter visualization 90

5.2 Multiparameter visualization with two data sets 90

5.3 Two iso-surfaces, yellow - oxygen, red - hydrogen 91

5.4 Selected fuel cell visualization 92

5.5 Screenshot from medical visualization software 93

5.6 Modified shadow projection 95

5.7 Interactive volume clipping 96

5.8 Interactive combination of different data sets 97

5.9 Glyphs in flow visualization 98

5.10 Animations: over time a), parameter b) 100

5.11 Focus and Context example 101

5.12 ExoVis - 2D widget . 103

5.13 ExoVis - 3D widget . 104

5.14 The house of A. Square . 105

5.15 4D hypercube . 106

5.16 Projecting from 3D to 2D . 107

5.17 5D interaction energy scalar field 108

158

List of Figures 159

5.18 4D hypercubic lattice . 108

5.19 Hyperslice of a 4D potential function 110

5.20 Screenshot from “Burnout 2: Point of Impact” 111

5.21 Volume illustrations . 113

5.22 Charcoal line drawing skull data) 113

5.23 Charcoal line drawing engine 114

5.24 Some Flow NPR . 115

6.1 vuRenderer with frog data set 122

6.2 Pre-classification of the engine data 122

6.3 Post-classification of the frog data 123

6.4 Shading of the engine data . 123

6.5 Gradient magnitude rendering, engine a) and tomato b) . . . 124

6.6 Non-photorealistic volume rendering of the foot 124

6.7 Iso-surfaces, engine a) and silicon b) 125

6.8 UNC Brain as X-Ray a) and using maximum intensity pro-
jection b) . 125

6.9 Lobster, a) CC, b) BCC, c) half, d) one 126

6.10 Kidney data frame 49/69, a) CC, b) D∗
4, c) BCC 127

6.11 Skull data, a) (1,1) T = 1.5, b) (2,2) T = 1.5, c) (4,2) T = 1.5 127

6.12 Skull data (1,1), a) T = 0.0, b) T = 1.5, c) T = 5.5, d) T = 25.0128

6.13 Simple fuel cell visualization 132

7.1 Simple fuel cell visualization 134

7.2 Direct volume rendering . 135

7.3 Hedgehogs . 136

7.4 vuCompressor . 138

7.5 vuRenderer with bonsai tree 143

159

160 List of Figures

160

List of Examples

Example 3.1 Data sequence 26
Example 3.2 RLEncoded sequence I 26
Example 3.3 RLEncoded sequence II 26
Example 3.4 1D image 28
Example 3.5 Wavelet decomposition 28
Example 3.6 Wavelet transform 28
Example 3.7 Lifting scheme 38
Example 3.8 Split 38
Example 3.9 Prediction 38
Example 3.10 Update 38
Example 3.11 Lifting wavelet decomposition 39
Example 7.1 Enabling/Disabling visualizations 136
Example 7.2 Volume rendering using the VTK 137
Example 7.3 Resampling to D∗

4 139
Example 7.4 Simple bricking 140
Example 7.5 Wavelet decomposition I 141
Example 7.6 Wavelet decomposition II 141
Example 7.7 Run Length Encoding 142
Example 7.3 3D Texture Loading 144
Example 7.4 Volume Rendering 145
Example 7.5 Pre-classification 145
Example 7.6 Simple shading 146
Example 7.7 Multi threading 146

161

162 List of Examples

162

Bibliography

[Abb94] Edwin Abbot. Flatland: a romance of many dimensions. 1894.

[AM76] Neil W. Ashcroft and N. David Mermin. Solid State Physics.
Prentice-Hall, 1st edition, 1976.

[AS92] Trolltech AS. Qt, 1992. http://www.trolltech.com/
products/qt/index.html.

[ATi01] ATi. Ati website, 2001. http://www.ati.com/developer.

[BBS94] Deborah Berman, Janson Bartell, and David Salesin. Multires-
olution painting and compositing. In Proceedings of Siggraph
94, pages 85–90, 1994. New York, NY.

[BGK+99] David Blythe, Brad Grantham, Mark J. Kilgard, Tom
McReynolds, Scott R. Nelson, Celeste Fowler, Simon Hui,
Paula Womack, Linda Rae Sande, and Dany Galgani.
Advanced graphics programming techniques using opengl,
1999. http://www.opengl.org/developers/code/sig99/
advanced99/notes/node297.ht%ml.

[BMDF02] Steven Bergner, Torsten Möller, Mark S. Drew, and Graham D.
Finlayson. Interactive spectral volume rendering. In Proceed-
ings of IEEE Visualization 02, pages 101–108, October 2002.

[BNS] Imma Boada, Isabel Navazo, and Roberto Scopigno. Multires-
olution volume visualization with a texture-based octree.

[BPRD98] C. Bajaj, V. Pascucci, G. Rabbiolo, and Schikore D. Hyper-
volume visualization: A challenge in simplicity. In Proceedings
Symposium on Volume Visualization 1998, pages 95–102, 1998.

[BR98] Uwe Behrens and Ralf Ratering. Adding shadows to a texture-
based volume renderer. In Proceedings of IEEE Visualization
98, pages 39–46, October 1998.

[Bre99] Falk Brettschneider. Qextmdi, 1999. http://www.geocities.
com/gigafalk/qextmdi.htm.

[Bro00] Pat Brown. Ext texture compression s3tc, 2000.
http://oss.sgi.com/projects/ogl-sample/registry/
EXT/texture_compression%_s3tc.txt.

163

164 Bibliography

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture mapping
hardware. In Symposium on Volume Visualization and Graph-
ics 1994, pages 91–98, 1994.

[CCF97] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia.
Extending distortion viewing techniques from 2d to 3d data.
In IEEE Computer Graphics and Applications, Special Issue
on Information Visualization, pages 42–51. IEEE Computer
Society Press, July 1997.

[CDF92] A. Cohen, I. Daubechies, and J. Feauveau. Bi-orthogonal bases
of compactly support wavelets. In Communication on Pure
Applied Math, pages 45:485–560, 1992.

[CL93] B. Cabral and L. C. Leedom. Imaging vector fields using line
integral convolution. In Proceedings of ACM SIGGRAPH 93.
Computer Graphics Proceedings and Annual Conference Series,
1993.

[Cor] Able Software Corporation. 3d doctor screenshoot. http://
www.ablesw.com/3d-doctor/images.html.

[CS88] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices
and Groups. Springer-Verlag, 1988.

[CTM02] Hamish Carr, Thomas Theußl, and Torsten Möller. Isosurfaces
on optimal regular samples. To be published, 2002.

[Dau88] Ingrid Daubechies. Orthonormal bases of compactly supported
wavelets. In Communication on Pure Applied Mathematics,
pages 41(7):909–996, October 1988.

[DJL92] R. DeVore, B. Jawerth, and B. Lucier. Image compression
through wavelet transform coding. In IEEE Transactions on
Information Theory, pages 38(2):719–746, March 1992.

[DL90] Nira Dyn and David Levin. A butterfly subdivision scheme for
surface interpolation with tension control. In Transactions on
Graphics, volume 9(2), pages 160–169, April 1990.

[DS98] I. Daubechies and W. Sweldens. Factoring wavelet transforms
into lifting steps. In J. Fourier Anal. Appl, pages 4(3):245–267,
1998.

[ECS00] David Ellswort, Ling-Jen Chiang, and Han-Wei Shen. Acceler-
ating time-varying hardware volume rendering using tsp trees
and color-based error metrics. In Proceedings of IEEE Visual-
ization 2000, October 2000.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality
pre-integrated volume rendering using hardware-accelerated
pixel shading. In Siggraph/Eurographics Workshop on Graph-

164

Bibliography 165

ics Hardware 2001, 2001.

[ER01] David Ebert and Penny Rheingans. Volume illustration: Non-
photorealistic rendering of volume models. In IEEE Transac-
tions on Visualization and Computer Graphics, pages 253–264,
July-Sept 2001. Vol.7, No.3.

[ESMM02] Alireza Entezari, Randy Scoggins, Torsten Möller, and Raghu
Machiraju. Shading for fourier volume rendering. In Sympo-
sium on Volume Visualization and Graphics 2002, pages 131–
138, October 2002.

[FB90] S. Feiner and C. Beshers. Visualizing n-dimensional virtual
worlds with n-vision. In Computer Graphics, pages 37–38, 1990.

[FS94] Adam Finkelstein and David H. Salesin. Multiresolution
curves. In Proceedings of Siggraph 94, pages 261–268, 1994.
New York, NY.

[fSSSFU02] Centre for Systems Sience Simon Fraser University. Computer
imaging, March 2002. http://css.sfu.ca/update/vol14/
14.2-computer-imaging.html.

[GC95] Steven J. Gortler and Michael F. Cohen. Hierarchical and vari-
ational geometric modeling with wavelets. In Proceedings of
the 1995 Symposium on Interactive 3D Graphics, pages 35–42,
1995. New York, NY.

[GDH97] M. H. Gross, L. Lippert Dittrich, and S. Häring. Two methods
for wavelet-based volume rendering. In Computer and Graph-
ics, pages 237–252, 1997. 21(2).

[GMR97] A. Gaddipati, R. Machiraju, and Yagel R. Steering image gen-
eration using wavelet based perceptual metric. In Computer
Graphics Forum (Proceedings of Eurographics ‘97, pages 241–
251, September 1997.

[Gro] NASA Data Analysis Group. Nas website. http://www.nas.
nasa.gov/Groups/VisTech/index.html.

[GWGS02] Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang
Straßer. Interactive rendering of large volume data sets. In
Proceedings of IEEE Visualization 02, pages 53–60, October
2002.

[HH] A. J. Hanson and P. A. Heng. Illumination in 4d?

[HH92] Andrew Hanson and Pheng Heng. Four-dimensional views of
3d scalar field. In Technical Report 358, page 8, July 1992.

[HKERS02] Markus Hadwiger, Joe M. Kniss, Klaus Engel, and Christof
Rezk-Salama. High-quality volume graphics on consumer pc
hardware, 2002. Course Notes 42.

165

166 Bibliography

[Hoc97] Dawn M. Hoch. Chilton’s Ford Mustang/Cougar 1964-73 Re-
pair Manual. Haynes Publishing Group, 1997.

[Hou73] G.N. Houndsfieled. Computerized transverse axial scanning
(tomography): Part 1 description of system. In British Journal
of Radiology, pages 46:1016–1022, 1973.

[HTHG01] M. Hadwiger, T. Theßl, H. Hauser, and E. Gröller. Hardware-
accelerated high-quality filtering on pc hardware. In Prceedings
of Vison, Modeling, and Visualization 2001, pages 105–112,
2001.

[IHR96] Luis Ibáñez, Chafiaâ Hamitouche, and Christian Roux. Deter-
mination of discrete sampling grids with optimal topological
and spectral properties. In Proc. of the 6th International Work-
shop in Discrete Geometry for Computer Imagery DGCI96,
pages 181–192, 1996. Springer Verlag, Lyon, France.

[IHR97] Luis Ibáñez, Chafiaâ Hamitouche, and Christian Roux. Ray
tracing and 3d object representation in the bcc and fcc grids.
In Proceedings of the 7th International Workshop in Discrete
Geometry for Computer Imagery DGCI ’97, Lecture Notes
in Computing Science 1347, pages 235–241. Springer-Verlag,
1997. Montpellier, France.

[IP02] Insung Ihm and Sanghun Park. Wavelet-based 3d compression
scheme for very large volume data. In Proceedings of IEEE
Visualization 02, pages 101–108, October 2002.

[Jac91] A. G. Jackson. Handbook of Crystallography. Springer-Verlag,
1991.

[JFS95] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin.
Fast multiresolution image querying. In Proceedings of Siggraph
95, pages 277–286, 1995. New York, NY.

[Kak84] Michio Kaku. Hyperspace : a scientific odyssey through par-
allel universes, time warps, and the tenth dimension. Oxford
University Press, New York, 1984.

[KD98] Gordon Kindlmann and James Durkin. Semi-automatic gen-
eration of transfer functions for direct volume rendering. In
IEEE Symposium on Volume Visualization 1998, pages 79–86,
October 1998.

[KDG99] A. Köonig, H. Doleisch, and E. Gröoller. Multiple views and
magic mirrors - fmri visualization of the human brain. Tech-
nical report, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, February 1999.

[Kil01] Mark J. Kilgard. Nv texture rectangle, 2001. http:
//oss.sgi.com/projects/ogl-sample/registry/NV/

166

Bibliography 167

texture_rectangle.tx%t.

[KM01] Steven Lee Kilthau and Torsten Möller. Splatting optimiza-
tions. In Technical Report, School of Computing Science, Si-
mon Fraser University, pages 98–106, April 2001. SFU-CMPT-
04/01-TR2001-02.

[KMH01] Robert Kosara, Sylvia Miksch, and Helwig Hauser. Semantic
depth of field. In Proceedings of IEEE Information Visualiza-
tion 01, pages 97–104, 2001.

[KOPR97] Thomas Kehmann, Walter Oberschelp, Erich Pelikan, and
Rudolf Repges. Bildverarbeitung für die Medizin. Springer,
1st edition, 1997.

[KPHE02] Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert.
Interactive translucent volume rendering and precedural mod-
eling. In Proceedings of IEEE Visualization 02, pages 109–116,
October 2002.

[Lac95] Phil Lacroute. Fast volume rendering using a shear-warp fac-
torization of the viewing transformation. PhD thesis, Stanford
University, Sep 1995.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. In Computer
Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 163–
169, Jul 1987.

[Lev88] Marc Levoy. Display of surfaces from volume data. In IEEE
Computer Graphics and Applications, volume 8(3), pages 29–
37, May 1988.

[Lev92] M. Levoy. Volume rendering using the fourier projection-slice
theorem. In Proceedings of Graphics Interface ’92, Canadian
Information Processing Society, pages 61–69, May 1992.

[LM02] Eric B. Lum and Kwan-Liu Ma. Hardware-accelerated par-
allel non-photorealistic volume rendering. In International
Symposium on Nonphotorealistic Rendering and Animation
(NPAR02), June 2002.

[LME+02] Eidong Lu, Chrostopher Morris, David S. Ebert, Penny Rhein-
gans, and Charles Hansen. Non-photorealistic volume render-
ing using stipling techniques. In Proceedings of IEEE Visual-
ization 02, pages 101–108, October 2002.

[Loh98] Gabriele Lohmann. Volumetric Image Analysis. Wiley Teub-
ner, 1st edition, 1998.

[Mei00] Michael Meissner. Volvis website, 2000. http://www.volvis.
org.

167

168 Bibliography

[MGW02] Michael Meißner, Stefan Guthe, and Straßer Wolfgang. Inter-
active lighting models and pre-integration for volume rendering
on pc graphics accelerators. In Proceedings of Graphics Inter-
face 2002, 2002. to appear.

[MHB+00] Michael Meissner, Jian Huang, Dirk Bartz, Klaus Müller, and
Crawfis Roger. A practical evaluation of popular volume ren-
dering algorithms. In Symposium on Volume Visualization and
Graphics 2000, pages 81–90, October 2000.

[MHW99] Michael Meißner, Ulrich Hoffmann, and Straßer Wolfgang. En-
abling classification and shading for 3d texture mapping based
volume rendering using opengl and extensions. In Proceedings
of IEEE Visualization 1999, pages 207–214, October 1999.

[ML94] Stephen Marschner and Richard Lobb. An evaluation of recon-
struction filters for volume rendering. In Proceedings of IEEE
Visualization 94, pages 100–107, 1994.

[MSO] M. McGuigan, G. Smith, and S. Ohta. Visualization of four di-
mensional quantum chromodynamic data. In Proceedings SPIE
1989.

[MSS99] Maic Masuch, Stefan Schlechtweg, and Ronny Schulz. Speed-
lines: Depicting motion in motionless pictures. In Siggraph 99
Conference Abstracts and Applications, page 277, 1999.

[NM02] Neophytos Neophytou and Klaus Müller. Space-time points:
4d splatting on efficient grids. In Symposium on Volume Visu-
alization and Graphics 2002, pages 97–106, October 2002.

[nvi01] nvidia. nvidia website, 2001. http://developer.nvidia.com.

[OS75] A. V. Oppenheim and W. Schafer. Digital Signal Processing.
Prentice-Hall Signal Processing Series. Prentice-Hall, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 07632, 1975.

[Per96] Senthil Periaswamy. Detection of microcaclifications in mam-
mograms using hexagonal wavelets. Master’s thesis, University
of South Carolina, Sep 1996.

[PGG01] Bimal Poddar, Dave Gosselin, and Dan Ginsburg.
Arb texture env dot3, 2001. http://oss.sgi.com/
projects/ogl-sample/registry/ARB/texture_env_dot3.
tx%t.

[PHK+99] Hanspeter Pfister, Jan Hardenbergh, Jim Knottel, Hugh Lauer,
and Larry Seiler. The volumepro real-time ray-casting system.
In Proceedings of Siggraph 99, pages 251–260, 1999.

[PSM02] Pujita Pnnamaneni, Sagar Saladi, and Joerg Meyer. 3-d haar
wavelet transformation and texture-based 3-d reconstruction
of biomedical data sets. In Proceedings of IEEE Visualization

168

Bibliography 169

02, pages 101–108, October 2002.

[PWC] Bhaniramka Praveen, Rephael Wenger, and Roger Crawfis. Iso-
surfacing in higher dimensions.

[RA] Antonia Aguilera Ramacutéırez and Ricardo Pérez Aguila. A
method for obtaining the tesseract by unraveling the 4d hyper-
cube.

[RMC+00] Niklas Röber, Torsten Möller, Anna Celler, Troy Farncombe,
and Thomas Strothotte. Multidimensional analysis and visual-
ization software for dynamic spect. In Proceedings of the 47th
annual meeting of the Society of Nuclear Medicine, page 33
No.864, June 2000.

[RSEB+00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive volume rendering on standard pc graphics hard-
ware using multi-textures and multi-stage rasterization. In
Siggraph/Eurographics Workshop on Graphics Hardware 2000,
2000.

[Sal98] David Salomon. Data Compression: The Complete Reference.
Springer-Verlag, 1st edition, 1998.

[SCM99] Han-Wei Shen, Ling-Jen Chiang, and Kwan-Liu Ma. A fast vol-
ume rendering algorithm for time-varying fields using a time-
space partitioning tree(tsp). In Proceedings of IEEE Visualiza-
tion 1999, pages 371–377, October 1999.

[SDS96] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin.
Wavelets for Computer Graphics: Theory and Applications.
Morgan Kaufmann, 1st edition, 1996.

[Sed88] Robert Sedgewick. Algorithms. Addison-Wesley, 2nd edition,
1988.

[Ser82] J. Serra. Image Analysis and Mathematical Morpholg. Aca-
demic Press Inc., 1982.

[Set] Visible Human Data Set. Visible human data set. http://
css.sfu.ca/update/vol14/14.2-computer-imaging.html.

[Sha49] C.F. Shannon. Communication in the presence of noise. In
Proceedings of the IRE 1949, January 1949.

[SHER99] Christopher D. Shaw, James A. Hall, David S. Ebert, and
D. Aaron Roberts. Interactive lens visualization techniques.
In Proceedings of IEEE Visualization 99, pages 155–160, Oc-
tober 1999.

[SL98] S. Schuler and A. Laine. Hexagonal QMF Banks and Wavelets
in Time Frequency and Wavelets in Biomedical Signal Process-
ing. IEEE Press and John Wiley, 1st edition, 1998.

169

170 Bibliography

[Slo98] Neil J. A. Sloane. The sphere packing problem. In Proceedings
of the International Congress of Mathematicians, pages 387–
396, Berlin, 1998. Doc.Math.J.DMV Extra Volume ICM III.

[SM00] Heidrun Schumann and Wolfgang Müller. Visualisierung:
Grundlagen und allgemeine Methoden. Springer, 1st edition,
2000.

[SM02] Jon Sweeney and Klaus Mueller. Shear-warp deluxe: The
shear-warp algorithm revisited. In Joint Eurographics, IEEE
TCVC Symposium on Visualization 2002, pages 95–104, May
2002. Barcelona, Spain.

[SMLS98] William Schroeder, Ken Martin, Bill Lorenson, and Will
Schroeder. The Visualization Toolkit: An Object-Oriented Ap-
proach to 3-D Graphics(2nd Edition). Prentice Hall Computer
Books, 2nd edition, 1998.

[SR98] S. Schlechtweg and A. Raab. Rendering Line Drawings for
Illustrative Purposes, In.: Th. Strothotte, H. Wagener (eds.):
Abstraction in Interactive Computational Visualization: Ex-
ploring Complex Information Space. Springer, 1st edition,
1998.

[Srd] Marko Srdanovics. Jumping jack icon/glyph. http://www.cs.
uml.edu/~msrdanov/viz/.

[SS89] Richard C. Staunton and Neil Storey. A comparison between
square and hexagonal sampling methods for pipeline image pro-
cessing. pages 142–151, 1989. Vol. 1194.

[SS95] P. Schröder and W. Sweldens. Spherical wavelets: Efficiently
representing functions on the sphere. In Proceedings of Siggraph
95, pages 161–172, 1995.

[Swe95] W. Sweldens. The lifting scheme: A new philosphy in biorthog-
onal wavelet constructions. In Wavelet Applications in Signal
and Image Processing III, pages 68–79. Laine, A. F. and Unser,
M., 1995.

[Sys01] Ballard Power Systems. Ballard power systems website, 2001.
http://www.ballard.com.

[TL93] Takashi Totsuka and Marc Levoy. Frequency domain volume
rendering. In Computer Graphics (SIGGRAPH ’93 Proceed-
ings), volume 27(4), pages 271–278, Aug 1993.

[TMG01] Thomas Theußl, Torsten Möller, and Eduard Gröller. Optimal
regular volume sampling. In Proceedings IEEE Visualization
2001, pages 91–98, Oct 2001.

[Tor01] Melanie Karla Tory. Non-photorealistic visualization of flow
data sets, 2001. http://www.cs.sfu.ca/~mktory/personal/

170

Bibliography 171

cmpt888/index.htm.

[TRM+01] Melanie Tory, Niklas Röber, Torsten Möller, Anna Celler, and
Stella M. Atkins. 4d space-time techniques: A medical imaging
case study. In Proceedings of IEEE Visualization 01, pages
473–476, October 2001.

[TS02] Melanie Tory and Colin Swindells. Exovis: An overview and
detail technique for volumes. Technical Report SFU-CMPT-
TR2002-05, Computing Science Dept., Simon Fraser Univer-
sity, 2002.

[TUW] Abteilung für Computergraphik TECHNISCHE UNIVER-
SITÄT WIEN, Institut für Computergraphik und Algorith-
men. Vienna christmas tree. http://www.cg.tuwien.ac.at/
gallery/xmas/2001/.

[UVWJ+98] G. Uytterhoeven, F. Van Wulpen, M. Jansen, D. Roose, and
A. Bultheel. Waili: A software library for image processing us-
ing integer wavelet transforms. In SPIE Proceedings, The Inter-
national Society for Optical Engineering, volume 3338, pages
1490–1501, February 1998.

[vGK96] A. van Gelder and K. Kim. Direct volume rendering with shad-
ing via three-dimensional textures. In Symposium on Volume
Visualization 96, pages 23–30, 1996.

[vvL93] J. J. vanWijk and Robert van Liere. Hyperslice, visualization
of scalar functions of many variables. 1993.

[WB] C. Weigle and D. C. Banks. Extracting iso-valued features in
4-dimensional scalar fields.

[WEE02] Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Volume clip-
ping via per-fragment operations in texture-based volume vi-
sualization. In Proceedings of IEEE Visualization 02, pages
93–100, October 2002.

[Wel84] Alexander Frank Wells. Structural Inorganic Chemistry. Ox-
ford University Press, 5th edition, 1984.

[Wes90] Lee Westover. Footprint evaluation for volume rendering.
In Computer Graphics (SIGGRAPH ’90 Proceedings), volume
24(4), Sep 1990.

[WWH+] Manfred Weiler, Rüdiger Westermann, Chuck Hansen, Kurt
Zimmermann, and Thomas Ertl. Level-of-detail volume ren-
dering via 3d textures.

[wxw92] wxwindows.org. wxwindows, 1992. http://www.wxwindows.
org/.

171

