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Figure 1: Visualization of predicted 2m temperature anomaly (colors), forecast skill (isolines) and ensemble spread (height).

Abstract
In recent years, climate prediction systems based on coupled climate models are used for investigating the climate
predictability on a decadal time scale. Based on ensemble simulation techniques applied and hindcast experiments
carried out first, the predictive skill of a system can be derived. The ensemble simulations used for the decadal
climate predictions enable the issuing of probabilistic information along with the quantities predicted. In this work,
we focus on the concurrent visualization of three related 2D fields: the forecast variable, here the 2m temperature
anomaly, along with the corresponding predictive skill and the ensemble spread. We show exemplary solutions
produced with three different visualization systems: NCL, Avizo Green and ParaView.

Categories and Subject Descriptors (according to ACM CCS): J.2 [Computer Applications]: Earth and atmospheric
sciences—I.3.8 [Computing Methodologies ]: Computer Graphics—Applications

1. Introduction

Due to the chaotic features of weather, meteorological data
can be highly variable in space and time. Deterministic
weather forecasts based on atmosphere models are only reli-
able for short periods of time. The ability of weather models
to correctly meet spatiotemporal weather developments de-

creases with increasing forecast periods. Although determin-
istic forecasts are only possible for short time scales, the cli-
mate – the statistical features of the weather on longer time
scales – can be well simulated with coupled models of the
climate- or Earth system, respectively, which include inter-
actions and feedback among its different components.
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Climate projections for the coming centuries such as, e.g.,
discussed in the Assessment Reports of the Intergovernmen-
tal Panel on Climate Change (IPCC) [oCC14], are started
randomly from a long control simulation since the initial
conditions are unimportant on centennial time scales. On
shorter time scales, however, the initial conditions determine
climate predictions significantly. Therefore, decadal climate
predictions are initialized from actual observations.

By comparing predictions of these model systems for past
initialization dates in so-called hindcast experiments, ob-
served past data can be used to determine the forecast skill
achieved. The forecast skill is a spatial pattern that changes
with time. For areas with high skill, the uncertainty in the
predictions due to internal variability can be reduced. The
ensemble spread represents the internal climate variability
simulated by the model and provides us with additional use-
ful information. It can also be interpreted as the probability
of future values occurring in a certain range. For a quick vi-
sual analysis of the forecast variable, the corresponding skill,
as well as of the ensemble spread, a visualization is required
that concurrently shows the temporal evolution of all three
2D fields.

2. Related work

2.1. Uncertainty visualization

During the last two decades, the need to evaluate data along
with its uncertainty has gained in importance in many scien-
tific disciplines. Consequently, uncertainty visualization has
become an active research topic in the visualization com-
munity. Using examples taken from different application ar-
eas, [BOL12] and [BHJ∗14] give a general overview of the
current state-of-the-art developments in uncertainty visual-
ization. Specifically for ensemble data, [OJ14] define two
categories of visualization approaches: feature-based and
location-based methods. In the first category, features are
extracted from individual ensemble members and then visu-
ally combined. In the latter method, statistical properties of
the ensemble are computed for each grid point and the re-
sulting fields are visualized. [PWB∗09] and [SZD∗10], e.g.,
use both techniques and also make use of linked views in
order to enable the interactive visual analysis of statistical
properties together with the forecast variables.

2.2. Decadal climate predictions

Decadal climate prediction has been recognized to be poten-
tially important for society and decision making. Therefore,
an exercise of retrospective predictions (hindcasts) over the
past 50 years was performed for the 5th Coupled Model In-
tercomparison Project CMIP5 [TSM12] to be analyzed in
the 5th Assessment Report (AR5) [KP13] of the Intergov-
ernmental Panel on Climate Change (IPCC). For decadal
predictions, both the initial conditions of the climate system
and changing radiative forcing are important.

Figure 2: 2D visualization of two quantities using the over-
lay technique (Figure 11.4 from IPCC AR5 [KP13]). Here,
a root mean square skill score is shown by color-filled grid
cells. The overlayed black dots mark regions with a statisti-
cal significance of 95%.

2.3. Visualizations used in the domain

The UK’s Met Office coordinates an informal
exchange of near-real-time decadal predictions
[SSB∗13], which are regularly issued over the internet
(http://www.metoffice.gov.uk/research/climate/seasonal-to-
decadal/long-range/decadal-multimodel). However, also
due to the lack of a standard for skill estimates, the predic-
tions are issued without any skill information. Estimates for
uncertainties can only be obtained by the visual comparison
of the single-model predictions with each other or with
the multi-model mean. Although an overlay display of
the uncertainties, the multi-model skill, or the skill of the
individual systems would be very useful to evaluate and
interpret the results, only single-model results are currently
presented side-by-side with the multi-model mean.

However, combined visualizations of physical variables
and corresponding uncertainty information have been used
for many years in the climate community. Here, the dimen-
sion reduction is achieved by the overlay technique: filled
contours are mostly used for the physical variable, and line-
based techniques such as contour lines or stippling are over-
layed to display the statistical information. Examples in lit-
erature are mostly restricted to two fields that are visually
combined, see e.g. Figure 2 ( [KP13]).

3. Data and Methodology

The decadal climate predictions of the Max Planck Insti-
tute for Meteorology (MPI) for CMIP5/AR5 are based on
the Earth System Model MPI-ESM [SGE∗13]. Within the
MiKlip project (http://www.fona-miklip.de/en/), the decadal
prediction system has been improved in various aspects
[PMK∗13]. The initialization is now based on the ORAS4
ocean reanalyses [BMW13] for the ocean, and addition-
ally on ERA40 [UKS∗05] until 1989 and ERA-Interim
[DUS∗11] thereafter for the atmosphere. The model resolu-
tion is T63/L47 in the atmosphere and 1.5 degrees/L40 in the
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ocean. An ensemble of 10 members is produced with yearly
initialization using lagged days around the 1st of January be-
tween 1961 and 2015.

The predictions for the global 2m temperature are stored
as NetCDF files for each ensemble member on a monthly ba-
sis. First, anomalies are calculated relative to the mean cli-
matology of the period 1961-2010. Second, the anomalies
are low-pass filtered with a one-year running mean. Third,
the ensemble mean, the spread – which is defined here as
the ensemble standard deviation for a certain lead time –,
and the skill are calculated. For the evaluation of the skill
of the hindcasts we use the Pearson’s correlation coefficient
(e.g. [Wil11]), defined here as

cort =
∑ xit oi√

∑ x2
it

√
∑ o2

i

with xit being the anomaly for the ensemble mean hind-
cast at a given lead time t and certain initialization i, and
with oi being the corresponding anomaly of the observation.
This verification method is also used e.g. by [GKS∗13].

The derived predictive skill and the ensemble spread are
two different aspects of the forecast uncertainty. Both vary
with time. Areas with high standard deviation can be inter-
preted as areas in which small changes in the initial condi-
tions can result in completely different temperature values,
and hence the probability for a good prediction – the skill –
is low. Regions with high skill values are therefore almost
only present in areas with low ensemble spread even though
low ensemble spread does not guarantee for a high skill.

For a better understanding of the prediction system and
its statistical properties, we aim to concurrently visualize the
time-dependent 2-dimensional prediction data consisting of
three different variables. While the combination of two 2D
maps is straightforward with the techniques used in the do-
main, the combination of three 2D maps (here: prediction,
skill and ensemble spread) is challenging because overlayed
elements can occlude each other.

4. Results

We used three different visualization solutions to create ex-
emplary visualizations for the different tools and techniques:
NCL, Avizo Green and ParaView. All of these systems di-
rectly support NetCDF model data. For displaying the pre-
dicted 2m temperature anomaly, we always used a symmet-
ric red-white-blue colormap to highlight positive (red) and
negative anomalies (blue).

NCL (NCAR Command Language) [UCA14] is an in-
terpreted language specifically for analyzing and visualiz-
ing geo-scientific data. The software was developed at the
National Center for Atmospheric Research (NCAR) and is
freely available (http://www.ncl.ucar.edu/). The threshold of
0.5 has arbitrarily been chosen for the isocontours, repre-
senting a very high confidence in prediction skill. This al-
lows to apply a second line-based technique for an overlay

Figure 3: 2D visualization of three quantities using the over-
lay technique realized with NCL.

display of the ensemble spread because in our case high skill
values can only be achieved in regions with low standard de-
viation. As shown in Figure 3, we applied a stippling tech-
nique using seven different density levels for the visualiza-
tion of the standard deviation.

The commercial 3D visualization system Avizo Green
offers various state-of-the-art visualization techniques. We
used the height field method to display the ensemble spread,
and color coding for displaying the surface temperature
anomaly. For the visualization of the predictive skill we ex-
tracted isolines for skill values greater than or equal to 0.5.
For mapping the isolines onto the height field, an interme-
diate step was necessary: first, a series of textures with the
color coding, the isolines and the continental outlines was
created, which were then texture mapped onto the accord-
ing height field geometries. The result is shown in Figure
1. Finally, an animation was created to account for the time
dependence of the data.

Using the free available software ParaView [Kit15], we
performed a detailed interactive visual data analysis. Fig-
ure 4 shows four screens of this analysis process, with Fig-
ure 4a displaying a 2D visualization comparable to the re-
sults shown earlier. The primary variable displayed is the 2m
temperature anomaly (t2m), which is visualized using a so-
called uncertainty surface. A cold/warm color table is used
to map the respective temperature values, while the standard
deviation (stdev) is employed to perturb the color coding.
The inset in Figure 4a shows a close-up of this color per-
turbation. This technique enables us to show the ensemble
temperature anomaly. Local mean values can be recognized
by the mean color, while the local spread can be identified
by a closer look at the color perturbations. Areas with high
skill values are additionally marked with a dark color.

Furthermore, a selection using a parallel coordinates plot
has interactively been made, highlighting (in yellow) areas
with skill values above 0.5 and standard deviation below 1.0;
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(a) 2m temperature anomaly, skill and stdev at time: 54. (b) Scatterplot at time: 0. (c) Scatterplot at time: 108.

(d) Parallel Coordinates Plot at time: 54.

Figure 4: Visual data analysis of decadal climate predictions.

refer to Figure 4d. The values were arbitrarily chosen, how-
ever, they represent a good threshold to show data with little
uncertainty. The selection itself was made half way through
the simulation at time step 54, and is the same in all views.
In ParaView, the selection is based on the grid, and remains
the same during an animation of time. This allows us to com-
pare the data values at those points at other time steps. For
comparison, Figures 4b and 4c show scatterplots and the dis-
tribution of this selection at time steps 0 and 108.

Scatterplots are – similar to parallel coordinate plots – a
powerful tool to display correlations and dependencies be-
tween individual variables. It can clearly be seen that the
distribution of points is much more compact towards the end
of the simulation. This is visible in the entire data as well
as in the data points selected. Where at time step 0 almost
all temperature anomaly values are present in the selection,
at the end it is only a small range. Also, the shape of the
distribution changes and clearly shows a direct correlation
between skill and ensemble spread.

5. Discussion

In this work, we have used three different visualization sys-
tems and location based techniques to visualize two different
fields with uncertainty information together with predicted
2m temperature anomalies. All of the visualization systems
used allowed us to visualize the three different 2D fields in a

combined figure. However, all of these solutions have their
specific strengths and weaknesses.

While static visualizations can already be meaningful for
single time steps or temporal means, the temporal develop-
ment is usually not taken into account. The vector graph-
ics visualization shown in Figure 3 is an ideal quantitative
example intended for print media, but due to the stippling
technique applied, it is not very well suited for an animated
version of the visualization. The animated version of the 3D
visualization created with Avizo (see Figure 1) works much
better to qualitatively show the spatiotemporal patterns in
the data. Without interaction or a movement of the viewing
angle, though, the structure of the ensemble spread height
field might be hard to perceive. Finally, interactive visual
data analysis techniques, such as linked views and brush-
ing, as shown in Figure 4, enable the user to interactively
explore the data and study the relations and dependencies
between different variables in much more detail. Combined
with ParaView’s time animation capabilities, the temporal
development of all variables at selected grid points can be
studied. However, since various different displays have to
be evaluated and understood together, the results achieved
with ParaView are complex and not necessarily intuitive for
non-experts. On the other hand, these techniques can be very
valuable for experts because complex interdependencies in
the data can be discovered more easily.
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