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Figure 1: Engine, separable subsampling, smooth (left) and our non-separable subsampling, more detailed (right). An examina-
tion of the original data set in Figure 4 reveals the high fidelity of our subsampling method.

ABSTRACT

We exploit the theory of optimal sampling lattices in designing
wavelets and filter banks for volumetric datasets. A true multidi-
mensional (non-separable) filter bank is derived for the case of Haar
wavelets and applied to various datasets for comparison with the
corresponding separable multidimensional method. We propose a
non-separable wavelet transform that yields the subsampled data on
an optimal sampling lattice. This new non-separable filter bank al-
lows for more accurate and efficient multi-resolution representation
of the data over the traditional separable transforms. Furthermore,
we take advantage of methods that render the data directly from this
optimal sampling lattice to get images that demonstrate the superior
quality of the subsampled data of our new algorithm compared to
traditional methods.

CR Categories: K.6.1 [Computer Graphics]: Volumetric Data—
Hexagonal sampling K.7.m [Multidimesional Signal Processing]:
Filter Banks—Wavelets

Keywords: Body Centered Cubic lattice, Wavelets, Multiresolu-
tion, Multidimensional Signal Processing, Optimal Sampling, Vol-
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1 INTRODUCTION

Sampling theory has received a lot of attention as digital signal pro-
cessing technology evolves. Usually we are processing and dealing
with continuous phenomena, such as audio signals in 1D, images in
2D and medical images in 3D. However, our digital computers need
to work with a finite set of samples from the continuum. Regular
sampling is widely used since it can be described merely by a set
of basis vectors [5]. In effect, we evaluate the continuous function
at points in space which are integer linear combination of the basis
vectors. Lattices are the corresponding mathematical abstraction
of regular sampling. A lattice is described by a matrix called the
sampling matrix; the sampling matrix is simply formed by the basis
vectors of the sampling operation as its columns. If the sampling
matrix of a sampling scheme is a diagonal matrix, that scheme is
called separable otherwise it is called non-separable.

Separable sampling methods are the common choice due to their
simplicity and the ability to treat each dimension independently.
This has lead to the commonly known Cartesian lattices. However,
non-separable sampling methods have been proven to be more ef-
ficient under several different constraints. Hexagonally based sam-
pling lattice has been proven to be the most optimal sampling lattice
for the most general applications in signal processing [[2] [8]].

While there have been several algorithms to render one type of
optimal regular grid - the so called Body-Centered Cubic (BCC)



[[1] [9]], there has been very little investigation on how to manipu-
late data on these lattices. In this paper we will present an algorithm
for the creation of a multi-resolution pyramid on optimal regular
lattices, such as the BCC lattice.

Due to simplicity, today’s 3D scanners obtain samples on a
Cartesian lattice; hence all of the existing real datasets that are cap-
tured by various modality scanners are sampled on the Cartesian
lattice. For this reason, the algorithm proposed in this paper op-
erates directly (without any re-sampling step) on the Cartesian lat-
tice. Our proposed non-separable filter bank has been designed in a
manner that creates the subsampled data on an optimal BCC lattice
from a given Cartesian lattice. Hence, this method preserves more
frequencies with the same amount of samples in comparison with
the commonly used separable subsampling.

Another advantage of using non-separable wavelets is the flex-
ibility that they offer in terms of filter design. When designing
wavelets, it is desired that the basis functions be orthogonal and
have linear phase. Nonetheless, it has been proven that achiev-
ing these two goals in one solution is impossible when design-
ing one dimensional wavelets with higher order than the Haar
wavelets. While the separable methods suffer from this restriction,
non-separable wavelets in multi-dimensions can achieve both or-
thogonality and linear phase in one solution [6].

While previous methods struggle to demonstrate the superiority
of hexagonal sampling due to the lack of hexagonally acquired data
[[8] [1] [9]], we are able to demonstrate that our hexagonally sub-
sampled data is in all cases superior in quality to the Cartesian data
of the same size obtained through a comparable algorithm. Further-
more our proposed non-separable subsampling method is computa-
tionally more efficient than equivalent separable methods.

In Section 2 we summarize previous work in the fields of
wavelet design and optimal sampling. Section 3 introduces the
idea of non-separable subsampling which is followed by a wavelet
filter design in Section 4. Section 5 shows the details of our al-
gorithmic implementation, and our results follow in Section 6. We
conclude our paper in Section 7 with a summary of our results and
future research.

2 RELATED WORK

Optimal sampling structures have recently received a lot of atten-
tion in the field of volume rendering. [8] discusses the use of one
of the optimal sampling lattices for volumetric data, called Body
Centered Cubic (BCC) lattice. They illustrate the efficiency of this
sampling lattice by comparing the quality of images rendered from
the original data sampled on a Cartesian lattice with resampled data
on a BCC lattice. During the resampling process they increase the
sampling distance so that the BCC sampled volume has about 30%
less samples yet still represents the same frequency spectrum as the
original data on the Cartesian lattice. While there are visible differ-
ences it is inconclusive which one is superior in quality. One has
to keep in mind, that the sampling artifacts for the BCC lattice will
play a non-trivial role.

The BCC sampling lattice contains sampling points on a regular
cube plus an extra sample in the center of the cube as illustrated in
Figure 2.

The BCC sampling lattice can be described by the basis vectors
that are the columns of the BCC sampling matrix:

V bcc =





Tb −Tb Tb

−Tb Tb Tb

Tb −Tb Tb





where Tb is the sampling distance along each axes. Similarly, the
Cartesian sampling lattice can be described by the basis vectors that

Figure 2: The BCC sampling lattice

are the columns of the Cartesian sampling matrix:

V cc =





Tc 0 0
0 Tc 0
0 0 Tc





where Tc is the sampling distance for the Cartesian sampling lattice.
Under the assumption of spherically band-limited data, Theußl et al
[8] showed that using the BCC sampling lattice one can increase the
BCC sampling distance Tb by

√

3/2 without creating any aliasing.
This means that almost 30% less samples on the BCC lattice are just
enough to preserve the high frequencies that exist in the original
data.

Hence we conclude that the BCC lattice is a much more efficient
lattice for capturing a signal than the Cartesian lattice. In fact, when
we obtain the exact same number of samples using a BCC lattice
and a Cartesian lattice, BCC sampled data preserves more details
(higher frequencies) of the original data when compared to Carte-
sian sampled data. This amounts to a higher quality subsampling
of the original data source, assuming we are able to use the same
amount of data for Cartesian as well as for BCC data. This is the
main motivation of our work throughout this paper.

The theory of subsampling has been previously studied in the
signal processing community mainly for image processing applica-
tions. The theory has also been developed for higher dimensional
signals [[17] [6] [13]]. However, the application of multidimen-
sional subsampling has been focused on digital video processing
where the time axes is treated as the third dimension of the sig-
nal [[7] [18] [19]]. A concern raised in the application of three-
dimensional signal processing of digital video is that the third axes
differs from the first two axis. In other words, the way data is dis-
tributed along the time axes is uncorrelated with the way data is
distributed along X and Y axis. This issue remains as the main
disadvantage of applying three-dimensional subsampling to video
signals. However, volumetric data is a perfectly suitable applica-
tion area of the optimal subsampling methods since we are dealing
with a true three-dimensional signal.

Before the use of BCC data can be accepted by the mainstream,
efficient rendering techniques need to be established. Theußl et al
[8] have adapted splatting to render BCC data. Since splatting is
an inherent blurry technique it comes as no surprise that the re-
sulting images were blurry. Neophytou et al [9] adapted Shear-
Warp to three-dimensional BCC lattice and four-dimensional D∗4
lattice with great results. Carr et al [1] have introduced efficient iso-
surface extraction algorithm on BCC data and have analyzed their
quality and efficiency. However, up to this date no ”real” BCC data
has been available in order to put these algorithms to a test. This
paper will provide such data. Currently we are also developing al-
gorithm for the rendering of BCC grids using texturing hardware.
While these algorithms have been used for some of the renditions
in this paper, we refer the interested reader to Röber et al [10].

3 SUBSAMPLING MATRIX

Wavelet decomposition in 3D is usually obtained through a tensor
product of 1D wavelets; i.e. the wavelet decomposition is applied



along each axis in the signal (separable wavelets). Our contribu-
tion in this paper is to derive a perfect reconstruction filter bank
that subsamples the 3D Cartesian sampled data in a non-separable
fashion resulting in subsamples that are located on Body Centered
Cubic lattice. This means that during the subsampling process we
preserve as many high frequencies as theoretically possible due to
the close packing achieved by the BCC lattice.

In one dimensional signal processing, a subsampling operation
is defined as y[n] = x[s ·n] where s is an integer denoting the ratio
of the number of total samples to the samples preserved, x is the
original signal and y is the signal after subsampling. This equation
in higher dimensional spaces still holds, with the difference that the
scalar s turns into a subsampling matrix D which is a square ma-
trix of full rank and its size is the same as the dimensionality of the
problem. The columns of this matrix are the basis vectors repre-
senting the lattice. Let n be an integer vector, then the subsampling
operation in defined as:

y[n] = x[Dn] (1)

This sampling matrix is represented on the lattice by a fundamen-
tal parallelepiped, which is formed by the basis vectors (columns
of D). The subsampling process partitions the signal into copies
of the fundamental parallelepiped that tile the entire signal space.
It then replaces every parallelepiped with one sample. The funda-
mental parallelepiped for the 2D subsampling matrix

D =

[

1 1
2 −2

]

(2)

is illustrated in red in Figure 3.

Representative for coset 0

Representative for coset 1

Representative for coset 2

Representative for coset 3

Figure 3: Subsampling using sampling matrix D in Equation 2

Analogous to the 1D example where every s samples are re-
placed by one sample, in the multidimensional case every N =
|det D| samples are replaced by one sample. These N samples are
contained in one fundamental parallelepiped formed by the subsam-
pling matrix.

Instead of simply replacing N samples with one that is picked
from the samples to be replaced (as indicated in Equation 1), we
typically want to filter the data first (smoothing). This technique
is basically a wavelet decomposition of the signal. For designing
wavelet filters in multidimensional signal processing, we need to
find filter coefficients hn and a function ψ(x) that satisfy the dila-
tion equation using the subsampling matrix D:

ψ(x) =
∑

n

hnψ(Dx− n) (3)

.

As discussed in Section 4 perfect reconstruction filter banks have
close ties with wavelet transforms. We compute the corresponding
wavelet transform by designing a perfect reconstruction filter bank
and iterating on its lowpass band signal.

3.1 Coset Analysis
A subsampling matrix D, reduces the signal cardinality by:

N = |detD| (4)

This is true regardless of the dimensionality of the signal since
the volume of the fundamental parallelepiped is detD and the sub-
sampling process replaces every parallelepiped with one sample.
Every sample inside the fundamental parallelepiped belongs to a
coset. A coset is the set of all sample points in the signal that rest
on the same relative position within the fundamental parallelepiped
on all of the copies of the fundamental parallelepiped throughout
the signal. Roughly speaking one could compare the cosets to all
possible “remainder” terms after a “division” by D. Since there
are N samples inside the fundamental parallelepiped, there are N
cosets. Every coset is represented by a vector from the origin to
the position of the sample in the fundamental parallelepiped. Fig-
ure 3 demonstrates different locations inside two of the fundamental
parallelepipeds with different colors; the samples belonging to the
same coset have the same color. By inspection, the vectors repre-
senting the cosets in Figure 3 are:

k0 =

[

0
0

]

,k1 =

[

1
1

]

,k2 =

[

1
0

]

,k3 =

[

1
−1

]

Coset analysis has very close ties to the polyphase analysis dis-
cussed in Section 4.1. Because of this close relationship, in order
to design perfect reconstruction filter banks, we need an algorithm
to find the cosets of a subsampling matrix.

The coset vectors, satisfy the division theorem in vector arith-
metic. This means that they are valid remainders in the divi-
sion: n = Dm + kx where 0 ≤ x < N . Therefore, we can
find the unique coset vectors for every subsampling matrix. Let
v1,v2, · · · ,vd represent the basis vectors of the subsampling lat-
tice (columns of D). Then, every sample point in the underlying
lattice with coordinates n can be expressed as n =

∑d
i=1

civi.
Then, according to Cramer’s rule we have:

ci =
det[v1···vi−1nvi+1···vd]
det[v1···vi−1vivi+1···vd]

=
det[v1···vi−1nvi+1···vd]

N

Since the vi’s and n are all integer vectors and the determinant
of an integer matrix is an integer, every ci is a rational number.
Therefore, every ci has an integer part ai and a fractional part fi

which is a rational positive number less than one. The vector a =
[a1 · · · ad]

t denotes the fundamental parallelepiped that the sample
at n resides in; the vector f = [f1 · · · fd]

t determines which coset
this sample belongs to. For each fractional part we have: fi = x

N
where 0 ≤ x < N . Therefore, we can determine all coset vectors
by a linear combination of the basis vectors vi with the fractional
numbers gi = x

N
where 0 ≤ x < N . If the vector k = Dg is an

integer vector, then the vector k is a coset vector.

3.2 BCC Subsampling
The Body Centered Cubic lattice is described in [8] by :

V bcc =





1 −1 1
−1 1 1

1 1 −1







Our objective is to design a perfect reconstruction filter bank
that uses the BCC matrix V bcc for subsampling and computes the
wavelet transform of the signal as in Equation 3. However, this
matrix is not suitable for satisfying the dilation equation. A nec-
essary condition for a matrix to satisfy the dilation equation is that
the absolute value of all of its eigen-values be strictly greater than
one [6]. However, the eigen-values of this sampling matrix are:
λ1 = 2.0, λ2 = −2.0, λ3 = 1.0. This sampling matrix is not
suitable for dilation since λ3 = 1.0 and no dilation is obtained in
one dimension while the other two dimensions dilate. To be more
precise, when subsampling by V bcc, the axis along the third eigen-
vector does not participate in the dilation process.

Moreover, in order to obtain a multiresolution scheme so that
the geometric proportions of the objects in the lower resolutions are
preserved, we need to dilate equally along all three axes. Hence, we
desire equal eigen-values. Fortunatly there is more than one matrix
that describes the same sampling lattice [17]. In fact, all matrices
that are obtained by multiplying V bcc with an integer unimodular
matrix E (i.e. det E = 1) represent the same lattice, they only
index the samples differently.

We designed a procedure to search the space of all 3× 3 integer
triangular matrices E with the diagonal elements being 1 or -1:

E =





(−1)i a b
0 (−1)j c
0 0 (−1)k





where i, j, k ∈ {0, 1} and a, b, c ∈ {0,±1,±2}. It is easy to see
that E is a unimodular matrix. We checked the product E × V bcc

for its eigen-values. If the absolute value of all eigen-values are
equal and strictly greater than one, then the corresponding matrix E
would be a candidate unimodular matrix. We picked the candidate
with the smallest elements since its fundamental parallelepiped is
the least sheared. As a result we obtain

D =





−1 1 0
0 1 0
0 0 −1



 × V bcc =





−1 0 −1
1 0 −1
−1 2 1



 (5)

This matrix is perfectly suitable for our dilation equation since
|λ1| = |λ2| = |λ3| = 41/3. Moreover, we obtain D3 = 43I .
Indeed, after applying the down-sampling matrix D once we con-
vert a Cartesian lattice to a BCC lattice. After applying D a second
time (D2) we create the samples on another lattice called Face Cen-
tered Cubic (FCC). This lattice is another optimal sampling lattice
which is the reciprocal of the BCC lattice [8]. Finally, after three
applications of our down-sampling matrix D we end up on a sep-
arable Cartesian lattice again. Hence, we can recursively run the
downsampling process and compute the wavelet transform through
iterating on the lowpass band of the filterbank. This is described
in detail in Section 4. The vectors representing the cosets of this
matrix are:

k0 =





0
0
0



 ,k1 =





0
0
1



 ,k2 =





−1
0
0



 ,k3 =





−1
0
1



 (6)

4 WAVELETS AND FILTER BANKS

Wavelet theory has been a popular theory in applied mathemat-
ics due to its flexibility and wide range of applications in various
fields. The main advantage of wavelet analysis in comparison to
Fourier analysis is its locality property. While Fourier analysis
merely states which high frequencies exist in the signal, wavelet
analysis tells us where those high frequencies exist in the signal.
Due to this locality property of the wavelet basis, wavelet analysis

has been widely applied to image and signal processing for com-
pression [11] and noise reduction [12].

Daubechies [4] showed the close relation between the wavelet
theory and perfect reconstruction filter banks. She showed that us-
ing an iterative method on the low pass band of a filter bank one
can obtain the wavelet transform of the signal. In order to com-
pute the wavelet transform which corresponds to a down-sampling
matrix D, we design a filter bank that uses D for its subsampling
operators and define the filtering operations accordingly. In this
section we design filters to satisfy the dilation in Equation 3 for a
downsampling matrix that results in a BCC lattice.

The polyphase domain analysis in the Z-domain has been found
particularly useful for designing perfect reconstruction filter banks.
Polyphase analysis is in direct relation to the coset analysis in Sec-
tion 3.1. Infact, every phase of the signal or the filter corresponds
to one coset of the signal or the filter. Polyphase analysis is partic-
ularly useful since it partitions the set of samples into subsets each
of which is shift-invariant with respect to the sampling operation;
in other words, a delayed signal in one phase will still be in the
same phase. This helps us to divide the big task of filter design
for a shift-variant signal to several smaller problems of filter design
for shift-invariant signals. Similarly, we represent the filter in the
polyphase domain.

For the subsampling matrix D we define the polyphase trans-
form 1 of the signal as:

X(z) =
∑

ki∈U t
c

z
kiXi(z

D) (7)

Here, U
t

c denotes the set of coset vectors of the transpose subsam-
pling matrix, Dt, Xi(z) denotes the ith polyphase component of
the signal:

Xi(z) =
∑

n∈Z n

x(Dn− ki)z
−n, ki ∈ U

t
c (8)

We define pi(z) =
[

zk1 · · · zkN

]t
, ki ∈ U

t
c to be the inverse

polyphase transform vector and xp(z) = [X1(z) · · ·XN (z)]t is
the vector containing the polyphase components of the input signal.
Then Equation 8 can be rewritten as:

X(z) = pi(z) · xp(z
D) (9)

Moreover, the polyphase decomposition of a filter H , is defined
as the vector of Hi’s:

H(z) =
∑

ki∈U t
c

z
−kiHi(z

D)

Hi(z) =
∑

n∈Z n

h(Dn + ki)z
−n, ki ∈ U

t
c

Notice that the polyphase components of signals and filters are de-
fined in a reverse fashion so as to account for the action of convo-
lution [6].

The filter bank has several filters each of which is a band pass for
a certain part of the frequency distribution of the signal. Each one
of these filters has a polyphase expansion in the form of a vector.
The matrix formed by vectors of all of the filters in the analysis
bank of the filter bank is called polyphase matrix and denoted by
Hp(z). The polyphase matrix for the synthesis bank is denoted by
Gp(z). The overall filter bank equation in the Z-domain using a
polyphase notation is given by:

yp(z) = Gp(z
D) ·Hp(z

D) · xp(z
D)

1For matrix and vector algebraic notations used in the following equa-
tions, please refer to the appendix A



In this equation, xp denotes the signal in the polyphase domain.
Polyphase decomposition not only enables a parallel implementa-
tion of the algorithm parallel but also simplifies the filter design
process, which leads to easier understanding.

Kovacevic [6], proves that:

• Alias cancellation is achieved if and only if pi is the left eigen-
vector of the product GpHp

• Perfect reconstruction is achieved if and only if the eigen-
value associated with pi is a monomial: z−k

• Perfect reconstruction with an FIR filter is achieved if
and only if the determinant of the polyphase matrix is a
monomial:det Hp(z) = z−k

4.1 Polyphase Analysis
Using our down-sampling matrix of Section 3.2 we experience a
data reduction by a factor of 4. Hence N = 4 for this particular
case of a BCC down-sampling matrix. Therefore, there are going
to be four polyphase components in the signal as well as our filters:

hi(n1, n2, n3) = h(Dn + ki)

h0(n1, n2, n3) = h(−n1 − n3, n1 − n3,−n1 + 2n2 + n3)

h1(n1, n2, n3) = h(−n1 − n3, n1 − n3,−n1 + 2n2 + n3 + 1)

h2(n1, n2, n3) = h(−n1 − n3 − 1, n1 − n3,−n1 + 2n2 + n3)

h3(n1, n2, n3) = h(−n1 − n3 − 1, n1 − n3,−n1 + 2n2 + n3 + 1)

The transpose of our down-sampling matrix D is:

D
t =





−1 1 −1
0 0 2
−1 −1 1





Using the algorithm discussed in Section 3.1 we can derive the vec-
tors representing the cosets of Dt:

k0 =





0
0
0



 ,k1 =





0
1
0



 ,k2 =





−1
1
0



 ,k3 =





0
0
−1





4.2 Filter Design
We have all the necessary information to define filters of a perfect
reconstruction filter bank. The family of filters that can be de-
signed for non-separable wavelets can be studied in detail. The
non-separability brings about attractive properties that does not ex-
ist with separable methods. For instance, for any filter (other than
Haar filters) the conditions of linear phase and orthogonality cannot
coexist in a separable solution. However, in the non-separable case,
one can design filters that are both orthogonal and have linear phase
[6].

In [6] they design various families of orthogonal and linear phase
non-separable wavelets for two-channel subsampling. In this paper
we examine the Haar filter 2 in the non-separable scheme using four
channel subsampling since detD = 4. The low-pass Haar filter is
simply averaging the phases of the signal. The high pass filters
encode the error from linearly predicting each of the phases with
the average. This analogy is formally discussed in lifting schemes
[[14] [16] [15]]. In the traditional case of down-sampling by two,

2In this paper we limit ourselves to Haar filters for the simplicity of
the filter construction. Higher-order filters will further improve our results.
However, we found that even Haar filters result in superior down-sampled
data sets.

the one dimensional low-pass and high-pass Haar filter results in
the following polyphase representation:

h0p(z) = 1/2

[

1
1

]

,h1p(z) = 1/2

[

1
−1

]

The polyphase matrix for the analysis bank is:

Hp(z) = 1/2

[

1 1
1 −1

]

For multidimensional signal processing we can extend the idea
of linear prediction and the prediction errors for the filter design
problem. For BCC subsampling with four phases, we would need
to partition the frequency distribution of the signal into four bands,
hence we design four bandpass filters as:

h0p(z) = 1/4







1
1
1
1






,h1p(z) = 1/4







3
−1
−1
−1







h2p(z) = 1/4







−1
3
−1
−1






,h3p(z) = 1/4







−1
−1

3
−1







Hence, the polyphase matrix for the analysis bank can be written:

Hp(z) = 1/4







1 1 1 1
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1






(10)

resulting in the following inverse for the synthesis polyphase ma-
trix:

Gp(z) =







1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1






(11)

which satisfy all of the three conditions in Section 4 for alias can-
cellation and perfect reconstruction with FIR filters, since G(z) ·
H(z) = I, where I denotes the identity matrix.

5 IMPLEMENTATION

In this section we discuss the algorithm developed for polyphase de-
composition and Haar wavelet transform for the BCC subsampling
matrix. Also, we will discuss the rendering methods that were used
to obtain images of the datasets subsampled by our method.

5.1 Filter Bank
The implementation of our filter bank is considerably simplified
by the polyphase decomposition theory that was discussed in Sec-
tion 4. There are two main steps that are involved in the analysis
section of the filter bank: Polyphase Decomposition, Filtering.

The polyphase decomposition algorithm is simply a vector and
matrix division arithmetic once we know the coset vectors of the
subsampling matrix.

The top level polyphase decomposition algorithm for subsam-
pling matrix D is as follows:
N ← det D
for each [x, y, z] in the volume do

[q, r]← DIV IDE([x, y, z]′,D)
for each i← 0 . . . N − 1 do



if r == Coset[i] then
Phase[i](q)← volume(x, y, z)
break

end if
end for

end for
Also, the division algorithm is application of Cramer’s
rule:

function [q, r]← DIV IDE(n,D)
N ← |det D|
q1← det [n | D(:, 2) | D(:, 3)]
q2← det [D(:, 1) | n | D(:, 3)]
q3← det [D(:, 1) | D(:, 2) | n]
r← mod([q1q2q3]′, N)
q ← ([q1q2q3]′ − r)/N
r← D × r/N

Once the original volume decomposed into its four phases, we
can obtain the various bands of the analysis section by multiplying
the polyphase vector, by the polyphase matrix developed in Sec-
tion 4.2. The following piece of code performs the Haar decompo-
sition:

function Band← HAAR(Phase)

Band[0]← 1/4
∑

4

i←1
Phase[i]

Band[1]← Phase[0]−Band[0]
Band[2]← Phase[1]−Band[0]
Band[3]← Phase[2]−Band[0]

Basically, the function HAAR averages the phases and stores the
average in band 0. The other three bands are the details (wavelet
coefficients) which are the error of predicting the phases from their
average. The synthesis of the filter bank is similarly implemented
in the reverse order.

5.2 Rendering Method
In order to evaluate the quality of our novel down-sampling method,
we compare our method with a traditional separable method. The
separable method applies a filtering and downsampling step in each
coordinate axis independently. In order to have a fair comparison
we create a downsampled version of the data with the same number
of samples, i.e. on forth of the original samples. Hence we have to
downsample by a factor of 3

√
4 in each direction. The filter we are

using is linear interpolation along the three axis; this choice of filter
is only fair for comparison with the Haar filtering that is used for
the non-separable subsampling.

In order to compare the downsampled data obtained from BCC
downsampling and separable Cartesian downsampling, we used
several methods to render the resulting data. We used the splatting
method developed by [8] and the hardware accelerated texture slice
rendering method in [10]. We also developed our own raycasting
program in which we used a spherical kernel for interpolation pur-
poses on the BCC lattice and the Cartesian lattice. While the results
of the comparison between BCC and Cartesian subsampled data are
consistent across different rendering methods, none of the existing
methods are able to fully take advantage of the high frequencies
existing in the BCC subsampled data. In order to do proper in-
terpolation in the BCC lattice, and hence to obtain more accurate
renditions of BCC sampled data, one needs to find the appropriate
interpolation filter that cuts the voronoi cell of the frequency trans-
form of the BCC lattice (which happens to be an FCC lattice). This
problem remains to be studied.

For our purposes we simply use a linear approximation, i.e. we
use a spherical extention of the cone filter. The radial filter that we
use is described by Equation 12

h(x, y, z) = max (0, RADIUS −
√

x2 + y2 + z2) (12)

The RADIUS of the kernel is dependent on the lattice that it is
resampling. The extent of the radial kernel for the BCC lattice is
chosen to be Rbcc = 2 as that is the radius of the rhombic dodeca
hedron surrounding a BCC lattice point. However, the volume of
the frequency domain representation of the data on the BCC lattice
is
√

2 larger than the volume of the spectrum of the Cartesian data
[8]. We also know that the radius of the kernel in space domain has
an inverse relation with the radius of its support in frequency do-
main. Therefore, to be fair to the Cartesian the radial kernel chosen
for the Cartesian rendering is set to be Rcc = 2 6

√
2.

6 RESULTS

In this section we will present the images obtained from our ray-
casting method discussed in Section 5.2. We subsampled several
datasets 3 to get conclusive results on the superiority of the images
obtained by our BCC subsampling method.

The renditions of the original volumes are demonstrated in Fig-
ure 4

The downsampled versions of these datasets were computed us-
ing the algorithms discussed in the Section 5.1. The images in the
Figures 1, 5 and 6 show the images of the rendered subsampled
datasets. The image on the left is the Cartesian subsampling method
and the figure on the right is the BCC subsampled dataset.

For the Engine dataset in Figure 1 the overall specular contrast
of the BCC image suggests the higher frequencies preserved by
the BCC subsampling method. Moreover, the details are visible
around the circular areas of the pistons. Similarly, on the UNC
Brain dataset in Figure 6, it is interesting to notice that the BCC
images is slightly more detailed as predicted; this is specially no-
ticeable on the areas around the eyebrows, lips and on the cheeks.

The original hydrogen atom model in Figure 4 has some high
frequencies (mostly artifacts) due to the reconstruction process
which was used to create it. The fidelity of the BCC subsampling
method is shown in Figure 5 as all of those details are lost in the
left image and some of the high frequencies are preserved on the
right image.

7 CONCLUSIONS AND FUTURE WORK

We have examined and developed the mathematical framework for
designing and developing filter bank theory for the BCC sampling
lattice. This is an important step towards making the efficient BCC
lattice a viable alternative to the commonly used Cartesian sam-
pling systems.

We have successfully created a BCC sampling matrix and the
corresponding filter bank for Haar wavelets, which resulted in
downsampled version of an original Cartesian data set of supe-
rior fidelity over comparable separable (Cartesian) downsampling
methods. One strength of our method is that it can be directly ap-
plied to an existing Cartesian lattice without any apriori resampling
operations. Furthermore our method is computationally more effi-
cient than comparable separable downsampling methods.

There are various areas that need further investigation and study.
Designing higher order wavelets than the Haar wavelets is a chal-
lenging task. There have been studies of higher order wavelets
for non-separable wavelet transforms for the case of two-channel
subsampling [3] [6]; however, this area is not well studied for the
case of four-channel subsampling that is the case for BCC subsam-
pling (detD = 4) as discussed in this paper. In this paper we
have demonstrated how to obtain the smallest in the family of non-
separable four-channel wavelets. However, comparing higher order
wavelets with the corresponding order of wavelets in the separable

3The original datasets are obtained from www.volvis.org



(a) (b) (c)

Figure 4: Original datasets: (a) Engine(256 × 256 × 128) (b) Hydrogen Atom (128 × 128 × 128) (c) UNC Brain (256 × 256 × 145)

(a) (b)

Figure 5: Hydrogen Atom, separable subsampling (left) and our non-separable subsampling(right)

schemes would give rise to a wider range of options when selecting
wavelets for BCC lattices.

In terms of wavelet based compression techniques [11], fur-
ther investigation is required to determine how the optimality of
the underlying sampling lattice affects the quality and the ratio of
the compression. The existing wavelet based denoising techniques
should be examined for possible advantages, when applied to the
non-separable scheme.

Another research direction that demands closer attention is the
issue of interpolation when trying to display BCC sampled data.
Investigating various families of filters on the Voronoi cell of the
reciprocal of the BCC lattice would result in more efficient filters
that will in turn reveal more advantages of the BCC sampled data.

A NOTATIONS

In this appendix we establish the mathematical notation used
throughout the paper. The notation closely follows that used in [6].

• Boldface lower (upper) case letters denote vectors (matrices).

• Raising an n-dimensional complex vector z = [z1 . . . zn]t to
an n-dimensional integer vector k = [k1 . . . kn]t is an scalar

which denotes componentwise operations:

z
k = zk1

1
zk2

2
. . . zkn

n

• Z
n denotes the space of n-dimensional integer vectors.

• The Z-transform of a discrete sequence h(k) =
h(k1, . . . , kn) is defined as:

H(z) =
∑

k∈Z n

h(k)z−k

• Raising a vector z to a matrix power D is defined as:

z
D = [zd1 , zd2 , . . . , zdn ]t

where di is the ith column of the matrix D.
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