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ABSTRACT

We present a new method for rendering hexagonal based data sets
using common available graphics hardware. Our approach com-
bines the efficiency of hexagonal sampling with hardware acceler-
ated, texture based volume rendering techniques. Pre- and post-
classification as well as simple shading are possible within one ren-
dering pass. Our methods are applicable for both, static and time-
varying data sets.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: hexagonal data, texture based volume rendering,
pre/post-classification, shading, 3D, 4D

1 INTRODUCTION

When discretizing data either by a physical acquisition process (e.g.
medical imaging such as Computed Tomography or Magnetic Res-
onance Imaging and others) or by numerical techniques (e.g. Com-
putational Fluid Dynamics), we typically assume, that there is no
principal axis in the frequency spectrum of the data. In other words,
there is no information on weather a certain direction is preferable
for the sampling and discretization process. Hence the frequency
domain can be considered spherically bandlimited. During the sam-
pling process the main spectrum of the signal is in effect replicated
on a new lattice in the frequency domain [20]. A lattice is described
by a matrix called thesampling matrix. For so-calledregular sam-
pling the sampling matrix is simply formed by the basis vectors of
the sampling operation as its columns. If the sampling matrix of a
sampling scheme is a diagonal matrix, that scheme results in the de-
facto standard of sampling on a Cartesian lattice. However, it has
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been shown, that the most efficient lattice is the one characterized
as hexagonal [4].

While most of the applications of sampling theory on regular
lattices have been focused on the Cartesian lattice, a mainstream
use of hexagonally sampled data depends on the availability of the
appropriate tools and algorithms for its manipulation and rendering.
The major contribution of this paper is to enhance the suite of tools
available for the rendering of a given hexagonal lattice. The focus
of recent research on optimal sampling structures has been on the
so-called BCC lattice (one of many hexagonal lattice structures in
3D) due to its simplicity [19] [3] [14].

One of the most promising rendering algorithms to this date is
texture slicing. This is the fastest rendering algorithm and with the
recent work by Engel et al [5] it has obtained further popularity
due to its high-quality results.

Assuming that we are given hexagonally sampled data on a BCC
lattice, we introduce an efficient rendering algorithm by using tex-
ture based graphics hardware. In particular, we develop a tech-
nique which allows one to visualize a shaded three-dimensional
(3D) BCC lattice and time-varying 3D data (sampled on a so called
D4∗ lattice [4] [14]) in a single rendering pass.

While the theory shows that hexagonally sampled data (although
being represented with fewer number of samples) retains the iden-
tical information as comparable Cartesian lattices, we will inves-
tigate how well our rendering algorithm for hexagonally sampled
data competes with the traditional algorithm operating on an equiv-
alent Cartesian data set. We will show that the performance is com-
parable and at times even improved. Additionally, an advantage of
data sets sampled on the BCC lattice is that one half of the data
can be easily taken out (without any additional subsampling) and
rendered with good quality as a preview image.

The structure of the paper is as follows. After the discussion of
related and similar work in section 2 we will first describe the idea
of hexagonal sampling for three- and four-dimensional data sets in
section 3. In section 4 we explain our new algorithm on how to use
commodity graphics hardware to visualize data sampled on BCC
andD4∗ lattices. Section 5 presents qualitative and quantitative
results and compares our achievements with respect to the Cartesian
lattice. Finally, section 6 summarizes the paper, draws conclusions



and presents possible ways for future investigations.

2 PREVIOUS WORK

A major challenge for Volume Graphics is the large amount of data
that needs to be processed in order to visualize the data. Research in
the past 15 years has focused to solve this problem. One success-
ful avenue that has been pursued is the development of dedicated
hardware specialized in volume rendering. The early architecture
of SGI [1] has been used by Cabral et al [2] for interactive vol-
ume rendering using a 3D texture buffer. While this is bending the
purpose of the hardware that has been originally designed to do
surface graphics really well, special hardware for volume rendering
has been developed [15]. As this hardware can be used to create
stunning results, its disadvantage is the price.

With the advent of the line of commodity graphics hardware
by nVidia and ATi Cabral’s algorithm [2] has been adapted and
evolved [16]. One drawback of texture based volume rendering al-
gorithms has been their poor quality [10]. With the availability of
cheap, programmable graphics hardware the renditions have seen
a huge improvement. Post-classification and shading got possible
with great results at interactive rates [13] [16] [12]. Hadwiger et al
[7] have used multi-texturing in order to implement tri-cubic filter-
ing during the sampling of the 3D texture to increase the accuracy
of the renditions. The new line of graphics boards offer full 128bit
pipelines, opposed to the 32bit on current hardware, and hence we
should see huge improvements in the rendering quality in the com-
ing month. Engel et al [5] introduced an algorithm, that uses de-
pended textures to store the result of an analytic integration between
two rendering slices which can be used to create high-quality ren-
ditions.

Optimal sampling has recently received a lot of attention in the
scientific community. Ib́añez [8] adapted a ray casting algorithm
to visualize medical data sets. Later Theußl et al [19] discussed the
use of the Body Centered Cubic (BCC) lattice for splatting. They
illustrate the efficiency of this sampling lattice by comparing the
quality and the performance of images rendered from data sampled
on the Cartesian lattice with resampled data on the BCC lattice.
Müller et al later described the use of the BCC lattice for Shear-
Warp volume rendering [18]. Additionally they extended splatting
for the time-varying hexagonal data sets with great results [14].
Carr [3] developed techniques for an efficient iso-surfaces gener-
ation for the BCC lattice and demonstrated that his results were
comparable to the Cartesian lattice.

3 OPTIMAL SAMPLING

As hexagonal sampling has been discussed throughout the litera-
ture, we will give a brief introduction with the focus on the later
visualization using texture based hardware.

Sampling a signal corresponds to replicating the spectra in the
frequency domain. In order to avoid artifacts, these aliased spec-
tra have to be far enough from each other to avoid overlapping in
between. From correspondence between spatial and frequency do-
main we know that moving spectra further apart in the frequency
domain results in a decrease of the sampling distance in the spatial
domain. To move the samples in the spatial domain further apart,
i.e. to decrease the sampling distance, we have to pack the spectra
in the frequency space as dense as possible, under the assumption
that the spectra of the signal are spherically bandlimited. This refers
to the sphere packing problem [17]. As requirement for hexagonal
sampling we assume an isotropic and hyperspherically bandlimited
signal. This guarantees that the frequency responses are restricted
to hyperspheres.

A signal can be sampled in an unlimited number of different
ways. Due to simplicity, the most often sampling matrix used is
the Cartesian lattice. However, the Cartesian lattice is not the most
efficient lattice in terms of the Shannon theorem. In 3D several dif-
ferent hexagonal sampling grids exist which have a similar packing
density, all better than the Cartesian lattice. However, only a few
can be described as a lattice. In this paper for static volumetric data
sets the BCC lattice is used and for the time-varying case theD4∗

lattice [4].

Figure 2: Comparison of lattices (CC, BCC,D4∗)

Figure 2 shows a direct comparison in size and topology of the
different lattices used. As can be seen, the main differences be-
tween the Cartesian and the BCC lattice are the additional sampling
point in the centre of the cell and a by

√
2 increased sampling dis-

tance. For the time-varying hexagonal lattice, only one cell of a
time frame is shown.

Generally, for then-dimensional case, the hexagonal lattice can
be reconstructed by taking then − 1 Cartesian lattice and by off-
setting it along then-th dimension. A hexagonal lattice can also be
described as being composed out of two interleavingn-dimensional
Cartesian grids which are offset by0.5 in all n dimensions.

For the one-dimensional case, the Cartesian and the hexagonal
lattice are identical. However, the efficiency of the Cartesian over
the hexagonal lattice decreases with increasing dimensionality. A
two-dimensional hexagonal lattice already needs only0.86 of the
samples which are necessary for the appendant Cartesian lattice (3D
0.707, 4D 0.5).

3.1 3D
For static volumetric data sets the BCC lattice is used. As can be
seen from Figure 3 the BCC lattice can be thought of being com-
posed out of two interleaving Cartesian lattices. These two grids
have an increased sampling distance inx, y andz by

√
2. The cor-

ner of each cell describes the centre of a cell in the other lattice,
refer Figure 3.
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Figure 3: BCC lattice

Here for simplicity only two cells are visualized. With an in-
creased number of samples alongz and a decreased number of sam-



ples alongx andy, this results in a total number of1/
√

2 samples,
or roughly30 percent less samples. The quality that the BCC lattice
can be decomposed into two Cartesian lattices is exploited later for
rendering such hexagonal data sets using multi-texturing.

Gradients have to be computed in order to perform volumetric
shading. The gradient information can be determined by using
central differences. A sampling point in the BCC lattice has eight
closest neighbours (weight) and six additional neighbours along the
axes (black), Figure 3. The distance to the eight closest neighbours
is 1.0, while the distance to the next samples along the axes is

√
2.

The simplest way is to only consider the six axes aligned neigh-
bours and compute the gradient information using straightforward
central differencing. Additionally, the eight closest neighbours can
be used to refine the gradient information. This can be achieved in
two ways. The first one is to compute the central differences from
these eight neighbours along the axes where the results are linearly
interpolated and added to the existing gradient. Alternatively, four
additional non-axis aligned central differences can be determined
and added to the existing gradient. Care has to be taken to con-
sider the different sampling distances between the eight and the six
neighbours.

To enhance the interactivity with the visualization for preview
or Level-of-Detail purposes, one of the two textures can be easily
taken out without resampling and rendered alone without blending
with the second BCC texture. Here the opacity transfer function has
to be adjusted as only half the number of samples are used. This
half BCC latticecan be easily rendered using existing Cartesian
based volume rendering systems. Even though, only minor details
are missing, to visualize the complete signal both textures have to
be used.

3.2 4D
The interaction with and the rendering of time-varying data sets
from numerical simulations or medical acquisition processes is a
challenging task to this date. The optimality of hexagonal sampling
comes in very handy since using a four-dimensional hexagonal lat-
tice (D4∗) we save 50% of the data.

t
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Figure 4:D4∗ lattice [14]

As for the BCC lattice, theD4∗ lattice can be thought of being
build by severaln− 1 base lattices which are offset along then-th
dimension. Or in other words, several 3D Cartesian grids which are
offset along the time axis by0.5 in x, y andz. The sampling dis-
tance alongt is increased by

√
2 and decreased by the same amount

in all other dimensions, refer Figures 2 and 4. This results in a total
amount of 50 percent less samples than the Cartesian lattice. Fig-
ure 4 shows how theD4∗ lattice is offset overt. Here two cells
of two neighbouring time frames are displayed. These time frames
are offset by1/

√
2 alongt. Additionally, there are also offset by

0.5 in x, y andz which has to be considered for the rendering to
accommodate for the lattice topology.

To load and render a time frame, three different methods are ap-
plicable. The simplest way is to load and visualize only oneD4∗

lattice time frame. Each time frame has1/
√

2
3

less samples than
the appendant Cartesian time frame. To increase the quality, two,
or correctly three, time frames can be used additionally and ren-
dered as a BCC volume. Here the second texture results from either
loading the previous or the next time frame, or is determined by the
interpolation of both of them.

Gradient information for shading the data set can be computed
straightforwardly. If the data set is rendered using one time frame
only, simple central differences are applicable. If the time frames
are rendered as BCC volume, the gradient information can be com-
puted by using the methods discussed in the last section.

4 RENDERING

The adaptation of existing texture based volume rendering tech-
niques to the BCC lattice is straightforward and will be discussed
in detail in this section. For the implementation we are targeting
on the widely available graphics accelerators fromnVidia. The ren-
dering application was developed under Linux and the graphics API
used was OpenGL.

Unfortunately, current OpenGL implementations do not support
hexagonal textures in hardware. An advantage of the BCC lattice
is, that it can be decomposed into two interleaving cubic Cartesian
grids which are offset by0.5 in all three dimensions in the spatial
domain. In order to render the BCC volume correctly, one texture
has to be translated by1/2 · tex size in x, y andz. These two tex-
tures can be loaded separately into two texture units. Each texture
can now be sliced using a standard texture based volume renderer
and the result from both texture units is blended together using reg-
ister combiners in a final compositing step.

As discussed in the last section, time-varying optimal sampling
results in two Cartesian based volumes which are offset in the same
way as the two textures in the BCC lattice. However, these time
frames are also offset over time which needs to be considered for
the rendering. Each time frame can be rendered independently
from each other using existing texture based volume rendering tech-
niques [14]. Care has to be taken to adjust the texture coordinates
by 0.5 in x, y andz for each odd time frame. Two, or correctly
three, time frames can be used to render the data set as a BCC vol-
ume. Here the two additional time frames (t−0.5 andt+0.5) have
to be interpolated in order to be at the same point in time ast. Al-
ternatively, if the changes over time are minor, just one additional
time frame is used and the interpolation over time is discarded.

In this section we explain how static and time-varying hexago-
nal data sets can be rendered using pre- or post-classification and
simple shading.

Different blending schemes to achieve either direct volume ren-
dering, non-polygonal iso-surfaces, MIP, or X-Ray renditions can
be applied straightforwardly and are the same as for Cartesian based
rendering systems.

Some characteristics of hexagonal lattices can be exploited to in-
crease the interactivity with BCC andD4∗ based data sets. For in-
stance, both data sets can be rendered using two interwoven textures
to increase the quality. But they can also be rendered by only using
one texture for Level-of-Detail or preview purposes to increase the
interactivity.

In time-varying data sets, the selection of a specific time frame
can be very tedious, especially for large data sets as when changing
the current time frame the appropriate volume has to be loaded and
rendered. Here, a simple yet very efficient approach can be used to
interpolate between several time frames in hardware and after the



selection of the demanded time frame is made load and render this
one only.

In general, the rendering of BCC andD4∗ data sets is more ef-
ficient than for the appendant Cartesian based data sets. However,
due to the OpenGL requirement of textures being the size of2n,
some hexagonal data sets (as texture) are larger than the Cartesian
ones, which can result in an increase in the rendering time. Section
5 shows some examples and explains the problem in more detail.

4.1 Classification
All data sets, rendered either as BCC volume or as Cartesian vol-
ume can be classified using pre- or post-classification in a single
rendering pass.

For pre-classification generally a luminance volume is loaded
into the texture memory together with a colour lookup table. For
rendering BCC based data sets, simply two luminance textures are
loaded into texture units 0 and 1. The second texture has to be offset
by 1/2 · tex size in x, y andz to accommodate for the BCC lattice
topology, compare with Figure 3. Now both textures are sampled
at view-aligned quads and the result of both texture units is blended
together using register combiners and output to the screen. Figure
5 shows the rendering pipeline used for pre-classification.
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Figure 5: Pre-classification for BCC rendering

Post-classification [13] can also be adapted straightforwardly.
As for pre-classification, BCC data sets are loaded into texture
memory as luminance volumes and assigned to either texture unit
0 or 1. The colour and opacity lookup table is loaded as depen-
dent texture into the texture units 2 and 3. Now both luminance
textures are sampled at view-aligned quads and the result is used
for a dependent texture lookup in the texture units 2 and 3. Finally,
the output is blended in the same way as for pre-classification. The
pipeline can be seen in Figure 6.

However, even though we are rendering with less samples, the
frame rate can be lower for BCC volumes with post-classification
than for the rendering of cubic Cartesian data sets. This is due to
the additional use of texture units 2 and 3.

For the rendering ofD4∗ data sets, or when only one BCC tex-
ture is used, pre- and post-classification can be accomplished as
usual.

4.2 Shading
Shading is very important for volume rendered images as it uses
additional visual cues which improves the perception of the data.
Several shading techniques have been proposed for texture based
volume rendering [13] [12]. In this section we are demonstrating
how simple shading using texture shaders and register combiners
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Figure 6: Post-classification for BCC rendering

can be accomplished for hexagonal data sets in a single rendering
pass.

The gradient information can be pre-computed using one of the
techniques which were discussed in section 3. The luminance vol-
ume is loaded together with the gradients as RGBA volume where
the gradient information is stored in the RGB part and the data as
luminance volume in the A section. For BCC rendering, two data
sets are loaded into either texture unit 0 or 1. The texture is sam-
pled as usual at view-aligned quads and the output of both texture
units is shaded using register combiners. The final result is blended
together in the final compositing step. The light colour and direc-
tion can be changed using the OpenGL constant colours. Figure 7
visualizes the rendering pipeline.

For the rendering ofD4∗ data sets, or when only one BCC tex-
ture is used, shading can be performed as usual for cubic Cartesian
data sets.

4.3 Hardware based interpolation of time
frames

The selection of a specific time frame in a time-varying volumet-
ric data set can be very tedious. Especially for large data sets, this
can be very time consuming as every frame has to be loaded and
rendered while seeking for specific features. Additionally, we are
proposing a simple yet efficient technique which allows one to nav-
igate easily through many time frames at interactive rates.
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Figure 8: Hardware based blending of time frames

In a pre-processing step every 5th or 10th time frame is down-
sampled and stored in an additional 4D matrix. Usually643 vol-
umes are sufficient enough to detect most features while quickly
skimming through the data. From a time-varying data set with 100
time steps, this results in 20 volumes with an entire size of just
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Figure 7: Shading for BCC rendering

about 5 MB. These volumes can be loaded resident into the texture
memory. When searching for a specific time frame, these volumes
are interpolated to match the current point in time for visualizing a
preview volume. If the demanded time frame is selected, the full
resolution volume is loaded from disk or memory and rendered as
usual.

As the small preview volumes stay resident in texture memory
they can be used immediately without reloading. Figure 8 visual-
izes the pipeline for hardware based blending of time frames. This
pipeline is similar to the ones used for blending BCC volumes ex-
cept that two different weights are applied to interpolate the two
textures.

As this feature is used for preview purposes only, no BCC ren-
dering is necessary, but can be implemented as well.

5 RESULTS

This section is used to present and discuss the results achieved. The
section is divided into two parts, one focuses more on the visual
quality of the rendering, while the other one examines the quantita-
tive results.

The system which was used to render the images and bench-
marks is a single processor Athlon 600 with 256 MB of Ram and a
GeForce4 Ti 4200 graphics accelerator running Linux. The images
were obtained in a512× 512 visual.

5.1 Quantitative Results
First, quantitative results like data size or rendering performance are
discussed. Seven different data sets have been used to compare the
quality and the rendering performance of hexagonally sampled data
sets with cubic Cartesian ones. The data sets used along their size
for the Cartesian and the hexagonal lattice can be found in Table 1.
The first five data sets are static, while the last two vary over time.

Data Set Data Size CC Data Size Hex
Lobster 301× 324× 56 213× 229× 79

Static ML 41× 41× 41 29× 29× 58

Statue Leg 341× 341× 93 241× 241× 131

UNC Brain 256× 256× 145 181× 181× 205

Engine 256× 256× 128 181× 181× 181

Animated ML 150× 150× 150× 50 106× 106× 106× 70

Kidney 90× 90× 80× 64 63× 63× 56× 90

Table 1: Data sets, size and dimensions

As expected, the hexagonal data sets are by a factor of
√

2 for
static and0.5 for time-varying data sets smaller than the appendant

Cartesian data sets. However, due to the OpenGL requirement of
texture sizes of2n, in some cases this can result in bigger textures
sizes as the next larger texture has to be chosen. Examples for this
are the Engine data, the UNC Brain and the Statue Leg. The Statue
Leg misses the next smaller texture size in the z-axis by three vox-
els. This can result in an increase in the rendering time.

Rendering Lobster ML 3D Statue unc Brain Engine
CC Pre 58 54 31 20 27
CC Post 46 34 24 15 18
CC Shad. 56 55 - 19 26
BCC Pre 64 45 23 25 27
BCC Post 42 30 16 16 18
BCC Shad. 62 45 23 25 27

Half BCC Pre 113 81 41 43 50
Half BCC Post 77 56 28 30 32
Half BCC Shad. 112 80 39 45 49

Table 2: Rendering performance 3D (fps)

Lobster, Statue Leg, Engine and the UNC Brain are commonly
used sample data sets from volvis.org [11]. Static and Animated
ML are a static as well as a time-varying version of the Marschner-
Lobb data set [9]. As the original Marschner-Lobb is413 in size,
a larger example was chosen for the animated version as well as
for the teaser figures on the front page for better comparison, both
in quality and quantity. The Kidney data is a time-varying data set
from nuclear medicine which visualizes the washout of radioactive
pharmaceuticals in the kidneys.

Rendering Animated ML Kidney
CC Pre 22 49
CC Post 17 29
CC Shad. 21 50

D4 (BCC) Pre 30 41
D4 (BCC) Post 18 28
D4 (BCC) Shad. 30 41

D4 Pre 53 89
D4 Post 35 50
D4 Shad. 48 85

Table 3: Rendering performance 4D (fps)

All data sets, except Marschner-Lobb, had to be resampled to the
hexagonal lattice. For better quality comparison of our rendering
algorithm, also the Cartesian data sets were resampled and offset
by 0.5 in x, y andz. For the resampling, a tri-cubic interpolation
was used. A similar version of the Marschner-Lobb data set was



used to directly create data sets sampled to the Cartesian, BCC or
D4∗ lattice. The qualitative comparisons can be seen in the next
section.

Table 2 compares the rendering performance of the static data
sets, while Table 3 shows the performance results for the two time-
varying data sets. The rendering performance is measured in frames
per second (fps). Each data set was benchmarked using pre- and
post-classification as well as shading (first column). Half BCC in
Table 2 refers to the performance obtained when only one of the two
BCC textures was used for the rendering. Additionally, the time-
varying data sets were rendered as BCC volume which are either
directly loaded trough an additional time frame, or interpolated over
time, Table 3. See also section 3 and 4.

No results were obtained for the shaded Statue Leg, as this data
set is too large to be rendered in a single pass on the system used.
This would require bricking and a two pass operation and hence
would not be a fair comparison with the BCC data set.

Generally, as can be seen in Table 2 and 3 the rendering of
BCC andD4∗ data sets is more efficient than the rendering of
the Cartesian data sets. However, if the resampling results in a
larger texture, the rendering of the hexagonal data set can be more
time-consuming. Additionally, the render performance decreases
slightly with post-classification, due to the additional use of the tex-
ture units 2 and 3.

Very important for time-varying volumes is a quick navigation
through the entire data set. Especially for larger volumes, this can
be a difficult and very time consuming task. Table 4 shows the time
which is needed to navigate trough the data and to load another time
frame. This includes the time which is needed for loading the next
volume and to render it. The next frame number can be arbitrary
and does not need to be the next neighbouring time frame.

Rendering Animated ML Kidney
CC ≈ 700 ≈ 100
D4 ≈ 90 ≈ 25

D4 (BCC) ≈ 175 ≈ 35
D4 (BCC time) ≈ 370 ≈ 60
Hardware CC ≈ 8 ≈ 8
Hardware D4 ≈ 8 ≈ 7

Table 4: Frame loading (ms)

The first row shows the results for loading the next volume from
the Cartesian lattice. The time is measured in milliseconds (ms).
The second row displays the results for theD4∗ lattice while the
next two following rows load two, respective three time frames and
render the data as BCC volume. BCC time loads three time frames
and interpolates the second texture from the previous and the fol-
lowing volume in time. The last two rows show the results for in-
terpolating the next time fame in hardware and displaying a lower
resolution version for preview.

5.2 Qualitative Results
While the last section focused on quantitative results, this one com-
pares the quality of the renditions between the Cartesian and the
hexagonal lattices.

The first part of this section compares the engine data set sam-
pled on the Cartesian and the BCC lattice. It further shows the
results when only one half of the BCC data is used for rendering.
Figure 18 displays the engine rendered using pre-classification. It
clearly shows that the image quality of the BCC rendering is com-
parable to the one obtained from the Cartesian sampled data set.
However, due to the multitexture based rendering, the BCC rendi-
tion seems to be a bit smoother.

Figure 9: Engine pre-classification (CC, BCC, BCC Half)

The most right image, where only one half of the BCC data set
is visualized, misses only minor details. This is an advantage of the
BCC lattice and the presented rendering algorithm, which allows a
quick change of the resolution and a first Level-of-Detail for faster
preview.

Figure 10: Engine post-classification (CC, BCC, BCC Half)

Figure 19 shows the engine rendered using post-classification,
while Figure 20 uses simple shading. Both images exhibit the
same qualities as the first one using pre-classification. Especially
the shaded visualization shows that the BCC volume is rendered
smoother than the Cartesian version. This is due to the final blend-
ing step where both parts of the BCC volume are composed to-
gether.

Figure 11: Engine shading (CC, BCC, BCC Half)

Figures 12 and 13 display the Marschner-Lobb data set [9] sam-
pled on the Cartesian and the BCC lattice and rendered using post-
classification and shading. Figure 12 compares the rendering qual-
ity of the Cartesian sampled data (left image) with the BCC data set
(middle and right image).

Figure 12: Marschner-Lobb post-classification (CC, BCC Half,
BCC)



In these images only a small part of the data is rendered using
a ramp transfer function. The middle image is rendered using only
one of the two BCC textures and the artifacts due to missing data
can be seen in the fuzzy rings. When both textures are used (right
image) the signal is rendered correctly, resulting in complete and
smooth rings.

Figure 13: Marschner-Lobb shading (CC, BCC)

Figure 13 shows two shaded renditions of the Marschner-Lobb
data. The BCC volume on the right was created from a downsam-
pled larger version using non-separable wavelet filters for the BCC
lattice [6]. The Cartesian data was resampled from a similar Carte-
sian volume.

Figure 14: Kidney post-classification (CC, D4)

The last part of this section compares the rendering quality for
the time-varying data sets. Figures 14 and 15 show one time frame
of the kidney data set. Here, time frames 37 (Cartesian), or 52
(hexagonal), are rendered using post-classification. In Figure 14
the left image shows the Cartesian sampled data set and the right
one displays the belonging time frame from the hexagonal lattice.

Figure 15: Kidney post-classification (BCC, BCC time)

Even though the right images uses only 35% of the original sam-
ples, all vital information is present. Using two or three additional

time frames, the four-dimensional hexagonal lattice can also be ren-
dered as a BCC volume as can be seen in Figure 15. Here, the left
image shows a BCC rendition of the same time frame where the
additional BCC texture is directly loaded from the nextD4∗ vol-
ume. The right image interpolates the additional texture from the
previous and the following time frame. Due to the slow changes in
the animation, no real difference can be seen.

Figure 16: Kidney time frames (CC, CC Hardware)

Figures 16 and 17 show the results when a new time frame is se-
lected and rendered. A new time frame can be loaded and rendered
from disk, or interpolated in hardware. For the hardware based in-
terpolation scheme, in a pre-processing step every 5th time frame of
the data set was downsampled and loaded resident as low resolution
volume into the texture memory. Here it can be used for fast pre-
view when quickly skimming trough a time-varying volume. Two
of these time frames are interpolated and weighted by the demanded
time.

Figure 17: Kidney time frames (D4, D4 Hardware)

The rendering quality of the hardware interpolated images are
not superior, but sufficient enough for preview purposes and to de-
tect certain features in the data. The benefits are a by a large factor
faster navigation through time-varying data sets (Table4).

6 CONCLUSIONS AND FUTURE WORK

We have presented a hardware accelerated rendering scheme for
hexagonal based volumetric data sets. The data sets used are sam-
pled to the BCC or when varying over time to theD4∗ lattice. The
data sets can be classified using pre- or post-classification and also
be shaded using simple shading. The renditions can be created in a
single rendering pass. All data sets can be rendered as BCC volume
or as first Level-of-Detail version using one half of the BCC data
set. We have also presented a small optimization which allows one
to interactively select a specific time frame from time-varying data
sets.



We have shown that the rendering performance is comparable
and sometimes even improved with respect to the Cartesian sam-
pled data sets. The quality of the renditions is comparable, but
sometimes the BCC volumes are smoother than the Cartesian ones,
which is due to the final blending step.

Future investigations will include an adaptation of pre-integrated
volume rendering [5] for hexagonal data sets to further increase the
rendering quality. Also, higher order filtering [7] can be applied to
achieve high-quality renditions. Additionally, more research has
to be spend to investigate proper interpolation schemes within the
hexagonal lattices as this is not a trivial task, due to the lattice topol-
ogy. Also other hardware accelerated rendering algorithms might
be possible which are able to interpolate within the entire BCC vol-
ume and do not need to rely on the fact that the data can be decom-
posed into two Cartesian grids. Interesting would be also to further
explore the possibilities for bricking large BCC volumes and to use
linear separable or non-separable wavelet filters [6] for a progres-
sive LoD based volume rendering technique. As less samples are
needed for rendering BCC volumes, with respect to Cartesian sam-
pled data sets, it can be assumed that less bricks have to be used
for rendering the same amount of data. This would increase the
rendering performance.
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Figure 18: Engine pre-classification (CC, BCC, BCC Half)

Figure 19: Engine post-classification (CC, BCC, BCC Half)

Figure 20: Engine shading (CC, BCC, BCC Half)


